人工智能在甲状腺结节管理中的应用:临床结果和成本-效果分析。

Javier Bodoque-Cubas, José Fernández-Sáez, Sergio Martínez-Hervás, María José Pérez-Lacasta, Misericòrdia Carles-Lavila, Raquel María Pallarés-Gasulla, Juan José Salazar-González, José Vicente Gil-Boix, Marcel la Miret-Llauradó, Anna Aulinas-Masó, Iñaki Argüelles-Jiménez, Santiago Tofé-Povedano
{"title":"人工智能在甲状腺结节管理中的应用:临床结果和成本-效果分析。","authors":"Javier Bodoque-Cubas, José Fernández-Sáez, Sergio Martínez-Hervás, María José Pérez-Lacasta, Misericòrdia Carles-Lavila, Raquel María Pallarés-Gasulla, Juan José Salazar-González, José Vicente Gil-Boix, Marcel la Miret-Llauradó, Anna Aulinas-Masó, Iñaki Argüelles-Jiménez, Santiago Tofé-Povedano","doi":"10.1210/clinem/dgaf399","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The increasing incidence of thyroid nodules (TN) raises concerns about overdiagnosis and overtreatment. This study evaluates the clinical and economic impact of KOIOS, an FDA-approved artificial intelligence (AI) tool for the management of TN.</p><p><strong>Methods: </strong>A retrospective analysis was conducted on 176 patients who underwent thyroid surgery between May 2022 and November 2024. Ultrasound images were evaluated independently by an expert and novice operators using the American College of Radiology Thyroid Imaging Reporting and Data System (ACR-TIRADS), while KOIOS provided AI-adapted risk stratification. Sensitivity, specificity, and Receiver-Operating Curve (ROC) analysis were performed. The incremental cost-effectiveness ratio (ICER) was defined based on the number of optimal care interventions (FNAB and thyroid surgery). Both deterministic and probabilistic sensitivity analyses were conducted to evaluate model robustness.</p><p><strong>Results: </strong>KOIOS AI demonstrated similar diagnostic performance to the expert operator (AUC: 0.794, 95% CI: 0.718-0.871 vs. 0.784, 95% CI: 0.706-0.861; p = 0.754) and significantly outperformed the novice operator (AUC: 0.619, 95% CI: 0.526-0.711; p < 0.001). ICER analysis estimated the cost per additional optimal care decision at -€8,085.56, indicating KOIOS as a dominant and cost-saving strategy when considering a third-party payer perspective over a one-year horizon. Deterministic sensitivity analysis identified surgical costs as the main drivers of variability, while probabilistic analysis consistently favored KOIOS as the optimal strategy.</p><p><strong>Conclusion: </strong>KOIOS AI is a cost-effective alternative, particularly in reducing overdiagnosis and overtreatment for benign TNs. Prospective, real-life studies are needed to validate these findings and explore long-term implications.</p>","PeriodicalId":520805,"journal":{"name":"The Journal of clinical endocrinology and metabolism","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Artificial Intelligence in Thyroid Nodule Management: Clinical Outcomes and Cost-Effectiveness Analysis.\",\"authors\":\"Javier Bodoque-Cubas, José Fernández-Sáez, Sergio Martínez-Hervás, María José Pérez-Lacasta, Misericòrdia Carles-Lavila, Raquel María Pallarés-Gasulla, Juan José Salazar-González, José Vicente Gil-Boix, Marcel la Miret-Llauradó, Anna Aulinas-Masó, Iñaki Argüelles-Jiménez, Santiago Tofé-Povedano\",\"doi\":\"10.1210/clinem/dgaf399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The increasing incidence of thyroid nodules (TN) raises concerns about overdiagnosis and overtreatment. This study evaluates the clinical and economic impact of KOIOS, an FDA-approved artificial intelligence (AI) tool for the management of TN.</p><p><strong>Methods: </strong>A retrospective analysis was conducted on 176 patients who underwent thyroid surgery between May 2022 and November 2024. Ultrasound images were evaluated independently by an expert and novice operators using the American College of Radiology Thyroid Imaging Reporting and Data System (ACR-TIRADS), while KOIOS provided AI-adapted risk stratification. Sensitivity, specificity, and Receiver-Operating Curve (ROC) analysis were performed. The incremental cost-effectiveness ratio (ICER) was defined based on the number of optimal care interventions (FNAB and thyroid surgery). Both deterministic and probabilistic sensitivity analyses were conducted to evaluate model robustness.</p><p><strong>Results: </strong>KOIOS AI demonstrated similar diagnostic performance to the expert operator (AUC: 0.794, 95% CI: 0.718-0.871 vs. 0.784, 95% CI: 0.706-0.861; p = 0.754) and significantly outperformed the novice operator (AUC: 0.619, 95% CI: 0.526-0.711; p < 0.001). ICER analysis estimated the cost per additional optimal care decision at -€8,085.56, indicating KOIOS as a dominant and cost-saving strategy when considering a third-party payer perspective over a one-year horizon. Deterministic sensitivity analysis identified surgical costs as the main drivers of variability, while probabilistic analysis consistently favored KOIOS as the optimal strategy.</p><p><strong>Conclusion: </strong>KOIOS AI is a cost-effective alternative, particularly in reducing overdiagnosis and overtreatment for benign TNs. Prospective, real-life studies are needed to validate these findings and explore long-term implications.</p>\",\"PeriodicalId\":520805,\"journal\":{\"name\":\"The Journal of clinical endocrinology and metabolism\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of clinical endocrinology and metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1210/clinem/dgaf399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of clinical endocrinology and metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1210/clinem/dgaf399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:甲状腺结节(TN)发病率的上升引起了人们对过度诊断和过度治疗的担忧。本研究评估KOIOS的临床和经济影响,KOIOS是一种fda批准的用于tni管理的人工智能(AI)工具。方法:回顾性分析2022年5月至2024年11月期间接受甲状腺手术的176例患者。超声图像由专家和新手操作员使用美国放射学会甲状腺成像报告和数据系统(ACR-TIRADS)独立评估,而KOIOS提供人工智能适应的风险分层。进行敏感性、特异性和受试者工作曲线(ROC)分析。增量成本-效果比(ICER)是根据最佳护理干预(FNAB和甲状腺手术)的数量来定义的。采用确定性和概率敏感性分析来评估模型的稳健性。结果:KOIOS AI表现出与专家操作员相似的诊断性能(AUC: 0.794, 95% CI: 0.718-0.871 vs. 0.784, 95% CI: 0.706-0.861;p = 0.754),显著优于新手(AUC: 0.619, 95% CI: 0.526-0.711;P < 0.001)。ICER分析估计,每个额外的最佳护理决策的成本为8,085.56欧元,这表明在考虑第三方付款人的视角时,KOIOS是一种占主导地位的成本节约策略。确定性敏感性分析确定手术费用是可变性的主要驱动因素,而概率分析一致认为KOIOS是最优策略。结论:KOIOS AI是一种具有成本效益的替代方法,特别是在减少良性TNs的过度诊断和过度治疗方面。需要前瞻性的、现实生活中的研究来验证这些发现并探索长期影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Artificial Intelligence in Thyroid Nodule Management: Clinical Outcomes and Cost-Effectiveness Analysis.

Objective: The increasing incidence of thyroid nodules (TN) raises concerns about overdiagnosis and overtreatment. This study evaluates the clinical and economic impact of KOIOS, an FDA-approved artificial intelligence (AI) tool for the management of TN.

Methods: A retrospective analysis was conducted on 176 patients who underwent thyroid surgery between May 2022 and November 2024. Ultrasound images were evaluated independently by an expert and novice operators using the American College of Radiology Thyroid Imaging Reporting and Data System (ACR-TIRADS), while KOIOS provided AI-adapted risk stratification. Sensitivity, specificity, and Receiver-Operating Curve (ROC) analysis were performed. The incremental cost-effectiveness ratio (ICER) was defined based on the number of optimal care interventions (FNAB and thyroid surgery). Both deterministic and probabilistic sensitivity analyses were conducted to evaluate model robustness.

Results: KOIOS AI demonstrated similar diagnostic performance to the expert operator (AUC: 0.794, 95% CI: 0.718-0.871 vs. 0.784, 95% CI: 0.706-0.861; p = 0.754) and significantly outperformed the novice operator (AUC: 0.619, 95% CI: 0.526-0.711; p < 0.001). ICER analysis estimated the cost per additional optimal care decision at -€8,085.56, indicating KOIOS as a dominant and cost-saving strategy when considering a third-party payer perspective over a one-year horizon. Deterministic sensitivity analysis identified surgical costs as the main drivers of variability, while probabilistic analysis consistently favored KOIOS as the optimal strategy.

Conclusion: KOIOS AI is a cost-effective alternative, particularly in reducing overdiagnosis and overtreatment for benign TNs. Prospective, real-life studies are needed to validate these findings and explore long-term implications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信