保护隐私的多中心差异蛋白丰度分析。

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yuliya Burankova, Miriam Abele, Mohammad Bakhtiari, Christine von Toerne, Teresa K Barth, Lisa Schweizer, Pieter Giesbertz, Johannes R Schmidt, Stefan Kalkhof, Janina Müller-Deile, Peter A van Veelen, Yassene Mohammed, Elke Hammer, Lis Arend, Klaudia Adamowicz, Tanja Laske, Anne Hartebrodt, Tobias Frisch, Chen Meng, Julian Matschinske, Julian Späth, Richard Röttger, Veit Schwämmle, Stefanie M Hauck, Stefan F Lichtenthaler, Axel Imhof, Matthias Mann, Christina Ludwig, Bernhard Kuster, Jan Baumbach, Olga Zolotareva
{"title":"保护隐私的多中心差异蛋白丰度分析。","authors":"Yuliya Burankova, Miriam Abele, Mohammad Bakhtiari, Christine von Toerne, Teresa K Barth, Lisa Schweizer, Pieter Giesbertz, Johannes R Schmidt, Stefan Kalkhof, Janina Müller-Deile, Peter A van Veelen, Yassene Mohammed, Elke Hammer, Lis Arend, Klaudia Adamowicz, Tanja Laske, Anne Hartebrodt, Tobias Frisch, Chen Meng, Julian Matschinske, Julian Späth, Richard Röttger, Veit Schwämmle, Stefanie M Hauck, Stefan F Lichtenthaler, Axel Imhof, Matthias Mann, Christina Ludwig, Bernhard Kuster, Jan Baumbach, Olga Zolotareva","doi":"10.1038/s43588-025-00832-7","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative mass spectrometry has revolutionized proteomics by enabling simultaneous quantification of thousands of proteins. Pooling patient-derived data from multiple institutions enhances statistical power but raises serious privacy concerns. Here we introduce FedProt, the first privacy-preserving tool for collaborative differential protein abundance analysis of distributed data, which utilizes federated learning and additive secret sharing. In the absence of a multicenter patient-derived dataset for evaluation, we created two: one at five centers from E. coli experiments and one at three centers from human serum. Evaluations using these datasets confirm that FedProt achieves accuracy equivalent to the DEqMS method applied to pooled data, with completely negligible absolute differences no greater than 4 × 10<sup>-12</sup>. By contrast, -log<sub>10</sub>P computed by the most accurate meta-analysis methods diverged from the centralized analysis results by up to 25-26.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Privacy-preserving multicenter differential protein abundance analysis with FedProt.\",\"authors\":\"Yuliya Burankova, Miriam Abele, Mohammad Bakhtiari, Christine von Toerne, Teresa K Barth, Lisa Schweizer, Pieter Giesbertz, Johannes R Schmidt, Stefan Kalkhof, Janina Müller-Deile, Peter A van Veelen, Yassene Mohammed, Elke Hammer, Lis Arend, Klaudia Adamowicz, Tanja Laske, Anne Hartebrodt, Tobias Frisch, Chen Meng, Julian Matschinske, Julian Späth, Richard Röttger, Veit Schwämmle, Stefanie M Hauck, Stefan F Lichtenthaler, Axel Imhof, Matthias Mann, Christina Ludwig, Bernhard Kuster, Jan Baumbach, Olga Zolotareva\",\"doi\":\"10.1038/s43588-025-00832-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantitative mass spectrometry has revolutionized proteomics by enabling simultaneous quantification of thousands of proteins. Pooling patient-derived data from multiple institutions enhances statistical power but raises serious privacy concerns. Here we introduce FedProt, the first privacy-preserving tool for collaborative differential protein abundance analysis of distributed data, which utilizes federated learning and additive secret sharing. In the absence of a multicenter patient-derived dataset for evaluation, we created two: one at five centers from E. coli experiments and one at three centers from human serum. Evaluations using these datasets confirm that FedProt achieves accuracy equivalent to the DEqMS method applied to pooled data, with completely negligible absolute differences no greater than 4 × 10<sup>-12</sup>. By contrast, -log<sub>10</sub>P computed by the most accurate meta-analysis methods diverged from the centralized analysis results by up to 25-26.</p>\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43588-025-00832-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00832-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

定量质谱法通过同时定量数千种蛋白质,彻底改变了蛋白质组学。汇集来自多个机构的患者数据增强了统计能力,但也引发了严重的隐私问题。在这里,我们介绍FedProt,第一个隐私保护工具,用于分布式数据的协同差异蛋白丰度分析,它利用联邦学习和加性秘密共享。在缺乏多中心患者衍生数据集进行评估的情况下,我们创建了两个:一个来自大肠杆菌实验的五个中心,一个来自人类血清的三个中心。使用这些数据集的评估证实,FedProt达到了与应用于汇总数据的DEqMS方法相当的精度,绝对差异不大于4 × 10-12,完全可以忽略不计。相比之下,最精确的meta分析方法计算出的-log10P与集中分析结果的偏差高达25-26。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Privacy-preserving multicenter differential protein abundance analysis with FedProt.

Quantitative mass spectrometry has revolutionized proteomics by enabling simultaneous quantification of thousands of proteins. Pooling patient-derived data from multiple institutions enhances statistical power but raises serious privacy concerns. Here we introduce FedProt, the first privacy-preserving tool for collaborative differential protein abundance analysis of distributed data, which utilizes federated learning and additive secret sharing. In the absence of a multicenter patient-derived dataset for evaluation, we created two: one at five centers from E. coli experiments and one at three centers from human serum. Evaluations using these datasets confirm that FedProt achieves accuracy equivalent to the DEqMS method applied to pooled data, with completely negligible absolute differences no greater than 4 × 10-12. By contrast, -log10P computed by the most accurate meta-analysis methods diverged from the centralized analysis results by up to 25-26.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信