没有共享刺激的个体间和位点间神经编码转换。

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Nature computational science Pub Date : 2025-07-01 Epub Date: 2025-07-11 DOI:10.1038/s43588-025-00826-5
Haibao Wang, Jun Kai Ho, Fan L Cheng, Shuntaro C Aoki, Yusuke Muraki, Misato Tanaka, Jong-Yun Park, Yukiyasu Kamitani
{"title":"没有共享刺激的个体间和位点间神经编码转换。","authors":"Haibao Wang, Jun Kai Ho, Fan L Cheng, Shuntaro C Aoki, Yusuke Muraki, Misato Tanaka, Jong-Yun Park, Yukiyasu Kamitani","doi":"10.1038/s43588-025-00826-5","DOIUrl":null,"url":null,"abstract":"<p><p>Inter-individual variability in fine-grained functional topographies poses challenges for scalable data analysis and modeling. Functional alignment techniques can help mitigate these individual differences but they typically require paired brain data with the same stimuli between individuals, which are often unavailable. Here we present a neural code conversion method that overcomes this constraint by optimizing conversion parameters based on the discrepancy between the stimulus contents represented by original and converted brain activity patterns. This approach, combined with hierarchical features of deep neural networks as latent content representations, achieves conversion accuracies that are comparable with methods using shared stimuli. The converted brain activity from a source subject can be accurately decoded using the target's pre-trained decoders, producing high-quality visual image reconstructions that rival within-individual decoding, even with data across different sites and limited training samples. Our approach offers a promising framework for scalable neural data analysis and modeling and a foundation for brain-to-brain communication.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":"534-546"},"PeriodicalIF":12.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inter-individual and inter-site neural code conversion without shared stimuli.\",\"authors\":\"Haibao Wang, Jun Kai Ho, Fan L Cheng, Shuntaro C Aoki, Yusuke Muraki, Misato Tanaka, Jong-Yun Park, Yukiyasu Kamitani\",\"doi\":\"10.1038/s43588-025-00826-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inter-individual variability in fine-grained functional topographies poses challenges for scalable data analysis and modeling. Functional alignment techniques can help mitigate these individual differences but they typically require paired brain data with the same stimuli between individuals, which are often unavailable. Here we present a neural code conversion method that overcomes this constraint by optimizing conversion parameters based on the discrepancy between the stimulus contents represented by original and converted brain activity patterns. This approach, combined with hierarchical features of deep neural networks as latent content representations, achieves conversion accuracies that are comparable with methods using shared stimuli. The converted brain activity from a source subject can be accurately decoded using the target's pre-trained decoders, producing high-quality visual image reconstructions that rival within-individual decoding, even with data across different sites and limited training samples. Our approach offers a promising framework for scalable neural data analysis and modeling and a foundation for brain-to-brain communication.</p>\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\" \",\"pages\":\"534-546\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43588-025-00826-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00826-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

细粒度功能地形中的个体间可变性对可扩展数据分析和建模提出了挑战。功能校准技术可以帮助减轻这些个体差异,但它们通常需要个体之间具有相同刺激的配对大脑数据,而这些数据通常是不可用的。本文提出了一种神经编码转换方法,该方法根据原始脑活动模式和转换后脑活动模式所表示的刺激内容之间的差异来优化转换参数,从而克服了这一限制。这种方法结合深层神经网络的层次特征作为潜在的内容表示,实现了与使用共享刺激的方法相当的转换精度。来自源对象的转换后的大脑活动可以使用目标对象的预训练解码器准确解码,产生高质量的视觉图像重建,可以与个人解码相媲美,即使数据来自不同的地点和有限的训练样本。我们的方法为可扩展的神经数据分析和建模提供了一个有前途的框架,并为脑对脑通信奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inter-individual and inter-site neural code conversion without shared stimuli.

Inter-individual variability in fine-grained functional topographies poses challenges for scalable data analysis and modeling. Functional alignment techniques can help mitigate these individual differences but they typically require paired brain data with the same stimuli between individuals, which are often unavailable. Here we present a neural code conversion method that overcomes this constraint by optimizing conversion parameters based on the discrepancy between the stimulus contents represented by original and converted brain activity patterns. This approach, combined with hierarchical features of deep neural networks as latent content representations, achieves conversion accuracies that are comparable with methods using shared stimuli. The converted brain activity from a source subject can be accurately decoded using the target's pre-trained decoders, producing high-quality visual image reconstructions that rival within-individual decoding, even with data across different sites and limited training samples. Our approach offers a promising framework for scalable neural data analysis and modeling and a foundation for brain-to-brain communication.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信