{"title":"CAR19-T/NK细胞和环形适配体药物偶联(ApDC)联合治疗可提高免疫治疗效果。","authors":"Ling-Qi Kong, Su-Yun Chen, Xu Cui, Ya-Hui Hu, Lian Wang, Jia-Yao Zhu, Lan-Xuan Guan, Bing-Kun Wang, Li-Ting Yang, Kai-Ming Chen, Chao-Ming Zhou","doi":"10.1007/s11010-025-05347-3","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR)-based cell therapies have transformed the treatment of haematological malignancies, especially acute lymphoblastic leukaemia (ALL). However, drug resistance limits long-term efficacy. This study aimed to develop a novel combination therapy using aptamer‒drug conjugates and CAR19-T/natural killer (NK) cells to eliminate tumour cells completely and improve the efficacy of CAR-based cell therapies. A novel circular aptamer‒drug conjugate (C-ApDC) targeting protein tyrosine kinase-7 (PTK7) was designed and synthesized, and CD19 CAR-T and CAR-NK cells were constructed. The stability of C-ApDC was analysed by agarose gel electrophoresis, its binding specificity was evaluated by flow cytometry, and its cytotoxicity was measured by a CCK-8 assay. The synergistic effect between C-ApDC and CAR19-T/NK cells was comprehensively assessed through flow cytometry cytotoxicity analysis. To further validate the feasibility of combination therapy, we synthesized a novel C-ApDC-nanobody conjugate and combined it with CAR19-NK/T cells. The stability of the conjugate was analysed by agarose gel electrophoresis, and the cytotoxic effects of the combination regimen on tumour cells were detected by flow cytometry. C-ApDC exhibited greater stability than linear ApDC and specifically bound to and killed PTK7-expressing Nalm6 cells in vitro. C-ApDC significantly enhanced the cytotoxicity of CAR19-T/NK cells to tumour cells. Similarly, the C-ApDC-nanobody conjugate, when used in combination with CAR19-NK/T cells, exhibited high stability. A combination therapy composed of C-ApDC nanobodies and CAR19-T/NK cells was successfully developed. This innovative approach effectively enhances the cytotoxicity of CAR19-T/NK cells against tumour cells, providing a novel therapeutic strategy for tumour treatment and offering a promising solution to overcome CAR-T resistance.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CAR19-T/NK cell and circular aptamer-drug conjugate (ApDC) combination treatment increases immunotherapy efficacy.\",\"authors\":\"Ling-Qi Kong, Su-Yun Chen, Xu Cui, Ya-Hui Hu, Lian Wang, Jia-Yao Zhu, Lan-Xuan Guan, Bing-Kun Wang, Li-Ting Yang, Kai-Ming Chen, Chao-Ming Zhou\",\"doi\":\"10.1007/s11010-025-05347-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chimeric antigen receptor (CAR)-based cell therapies have transformed the treatment of haematological malignancies, especially acute lymphoblastic leukaemia (ALL). However, drug resistance limits long-term efficacy. This study aimed to develop a novel combination therapy using aptamer‒drug conjugates and CAR19-T/natural killer (NK) cells to eliminate tumour cells completely and improve the efficacy of CAR-based cell therapies. A novel circular aptamer‒drug conjugate (C-ApDC) targeting protein tyrosine kinase-7 (PTK7) was designed and synthesized, and CD19 CAR-T and CAR-NK cells were constructed. The stability of C-ApDC was analysed by agarose gel electrophoresis, its binding specificity was evaluated by flow cytometry, and its cytotoxicity was measured by a CCK-8 assay. The synergistic effect between C-ApDC and CAR19-T/NK cells was comprehensively assessed through flow cytometry cytotoxicity analysis. To further validate the feasibility of combination therapy, we synthesized a novel C-ApDC-nanobody conjugate and combined it with CAR19-NK/T cells. The stability of the conjugate was analysed by agarose gel electrophoresis, and the cytotoxic effects of the combination regimen on tumour cells were detected by flow cytometry. C-ApDC exhibited greater stability than linear ApDC and specifically bound to and killed PTK7-expressing Nalm6 cells in vitro. C-ApDC significantly enhanced the cytotoxicity of CAR19-T/NK cells to tumour cells. Similarly, the C-ApDC-nanobody conjugate, when used in combination with CAR19-NK/T cells, exhibited high stability. A combination therapy composed of C-ApDC nanobodies and CAR19-T/NK cells was successfully developed. This innovative approach effectively enhances the cytotoxicity of CAR19-T/NK cells against tumour cells, providing a novel therapeutic strategy for tumour treatment and offering a promising solution to overcome CAR-T resistance.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-025-05347-3\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05347-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Chimeric antigen receptor (CAR)-based cell therapies have transformed the treatment of haematological malignancies, especially acute lymphoblastic leukaemia (ALL). However, drug resistance limits long-term efficacy. This study aimed to develop a novel combination therapy using aptamer‒drug conjugates and CAR19-T/natural killer (NK) cells to eliminate tumour cells completely and improve the efficacy of CAR-based cell therapies. A novel circular aptamer‒drug conjugate (C-ApDC) targeting protein tyrosine kinase-7 (PTK7) was designed and synthesized, and CD19 CAR-T and CAR-NK cells were constructed. The stability of C-ApDC was analysed by agarose gel electrophoresis, its binding specificity was evaluated by flow cytometry, and its cytotoxicity was measured by a CCK-8 assay. The synergistic effect between C-ApDC and CAR19-T/NK cells was comprehensively assessed through flow cytometry cytotoxicity analysis. To further validate the feasibility of combination therapy, we synthesized a novel C-ApDC-nanobody conjugate and combined it with CAR19-NK/T cells. The stability of the conjugate was analysed by agarose gel electrophoresis, and the cytotoxic effects of the combination regimen on tumour cells were detected by flow cytometry. C-ApDC exhibited greater stability than linear ApDC and specifically bound to and killed PTK7-expressing Nalm6 cells in vitro. C-ApDC significantly enhanced the cytotoxicity of CAR19-T/NK cells to tumour cells. Similarly, the C-ApDC-nanobody conjugate, when used in combination with CAR19-NK/T cells, exhibited high stability. A combination therapy composed of C-ApDC nanobodies and CAR19-T/NK cells was successfully developed. This innovative approach effectively enhances the cytotoxicity of CAR19-T/NK cells against tumour cells, providing a novel therapeutic strategy for tumour treatment and offering a promising solution to overcome CAR-T resistance.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.