针对天然产物发现的基因组挖掘。

4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2025-04-15 DOI:10.1016/bs.mie.2025.03.005
José D D Cediel-Becerra, Marc G Chevrette
{"title":"针对天然产物发现的基因组挖掘。","authors":"José D D Cediel-Becerra, Marc G Chevrette","doi":"10.1016/bs.mie.2025.03.005","DOIUrl":null,"url":null,"abstract":"<p><p>Natural products are a rich source of bioactive compounds, which are encoded by the biosynthetic gene clusters (BGCs). Genome mining is an essential strategy for identifying and characterizing BGCs. Targeted genome mining excels in the identification of similar BGCs based on key biosynthetic enzymes across multiple genomes. This chapter details the use of both manual and automated targeted genome mining to identify members of the FK-family BGCs (rapamycin, FK520/506). We describe the process of selecting query proteins, evaluating genomic context, and determining the presence of putative BGCs. Additionally, to streamline the manual process, we used GATOR-GC, a computational tool that identifies similar BGCs using required and optional proteins, performs comparative genomic analysis, deduplicates redundant BGCs, and generates visualizations of gene conservation and BGC diversity. Applying this approach, we showed how to identify FK-family members, both by looking into the cluster conservation diagrams, and the clustered heatmap summarizing all-vs-all BGC comparisons. The methods outlined here can be adapted for mining other natural product families, offering a scalable framework for uncovering novel biosynthetic pathways. Beyond natural product discovery, GATOR-GC provides broader applications for analyzing gene cluster conservation, organization, and evolutionary patterns.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"717 ","pages":"267-298"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeted genome mining for natural product discovery.\",\"authors\":\"José D D Cediel-Becerra, Marc G Chevrette\",\"doi\":\"10.1016/bs.mie.2025.03.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Natural products are a rich source of bioactive compounds, which are encoded by the biosynthetic gene clusters (BGCs). Genome mining is an essential strategy for identifying and characterizing BGCs. Targeted genome mining excels in the identification of similar BGCs based on key biosynthetic enzymes across multiple genomes. This chapter details the use of both manual and automated targeted genome mining to identify members of the FK-family BGCs (rapamycin, FK520/506). We describe the process of selecting query proteins, evaluating genomic context, and determining the presence of putative BGCs. Additionally, to streamline the manual process, we used GATOR-GC, a computational tool that identifies similar BGCs using required and optional proteins, performs comparative genomic analysis, deduplicates redundant BGCs, and generates visualizations of gene conservation and BGC diversity. Applying this approach, we showed how to identify FK-family members, both by looking into the cluster conservation diagrams, and the clustered heatmap summarizing all-vs-all BGC comparisons. The methods outlined here can be adapted for mining other natural product families, offering a scalable framework for uncovering novel biosynthetic pathways. Beyond natural product discovery, GATOR-GC provides broader applications for analyzing gene cluster conservation, organization, and evolutionary patterns.</p>\",\"PeriodicalId\":18662,\"journal\":{\"name\":\"Methods in enzymology\",\"volume\":\"717 \",\"pages\":\"267-298\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in enzymology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.mie.2025.03.005\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2025.03.005","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

天然产物是由生物合成基因簇(BGCs)编码的生物活性化合物的丰富来源。基因组挖掘是鉴定和表征bgc的重要策略。靶向基因组挖掘在多个基因组中基于关键生物合成酶鉴定相似的bgc方面表现出色。本章详细介绍了手动和自动靶向基因组挖掘的使用,以确定fk家族bgc(雷帕霉素,FK520/506)的成员。我们描述了选择查询蛋白的过程,评估基因组背景,并确定假定的bgc的存在。此外,为了简化人工过程,我们使用了GATOR-GC,这是一种计算工具,可以使用所需和可选的蛋白质识别相似的BGC,进行比较基因组分析,删除冗余的BGC,并生成基因保护和BGC多样性的可视化。应用这种方法,我们展示了如何通过查看聚类守恒图和汇总所有与所有BGC比较的聚类热图来识别fk家族成员。这里概述的方法可以适用于挖掘其他天然产物家族,为发现新的生物合成途径提供了一个可扩展的框架。除了发现天然产物,GATOR-GC还提供了更广泛的应用于分析基因簇保护、组织和进化模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeted genome mining for natural product discovery.

Natural products are a rich source of bioactive compounds, which are encoded by the biosynthetic gene clusters (BGCs). Genome mining is an essential strategy for identifying and characterizing BGCs. Targeted genome mining excels in the identification of similar BGCs based on key biosynthetic enzymes across multiple genomes. This chapter details the use of both manual and automated targeted genome mining to identify members of the FK-family BGCs (rapamycin, FK520/506). We describe the process of selecting query proteins, evaluating genomic context, and determining the presence of putative BGCs. Additionally, to streamline the manual process, we used GATOR-GC, a computational tool that identifies similar BGCs using required and optional proteins, performs comparative genomic analysis, deduplicates redundant BGCs, and generates visualizations of gene conservation and BGC diversity. Applying this approach, we showed how to identify FK-family members, both by looking into the cluster conservation diagrams, and the clustered heatmap summarizing all-vs-all BGC comparisons. The methods outlined here can be adapted for mining other natural product families, offering a scalable framework for uncovering novel biosynthetic pathways. Beyond natural product discovery, GATOR-GC provides broader applications for analyzing gene cluster conservation, organization, and evolutionary patterns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in enzymology
Methods in enzymology 生物-生化研究方法
CiteScore
2.90
自引率
0.00%
发文量
308
审稿时长
3-6 weeks
期刊介绍: The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信