CENPT通过增强谷胱甘肽的合成来预防肾细胞癌对铁下垂。

IF 8.1 1区 生物学 Q1 CELL BIOLOGY
Han Yang, Zongliang Zhang, Ninghan Feng, Kai Zhao, Yulian Zhang, Xinbao Yin, Guanqun Zhu, Zhenlin Wang, Xuechuan Yan, Xueyu Li, Zhaofeng Li, Qinglei Wang, Yixin Qi, Peng Zhao, Tianzhen He, Ke Wang
{"title":"CENPT通过增强谷胱甘肽的合成来预防肾细胞癌对铁下垂。","authors":"Han Yang, Zongliang Zhang, Ninghan Feng, Kai Zhao, Yulian Zhang, Xinbao Yin, Guanqun Zhu, Zhenlin Wang, Xuechuan Yan, Xueyu Li, Zhaofeng Li, Qinglei Wang, Yixin Qi, Peng Zhao, Tianzhen He, Ke Wang","doi":"10.1038/s41419-025-07848-x","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is characterized by chromosomal instability (CIN), which leads to tumor heterogeneity and other malignant features. CIN is caused by abnormal centromere and kinetochore function, which results in aneuploidy, rearrangements, and micronucleus production. Centromere and kinetochore gene misexpression plays a vital role in tumor progression. Here we show that Centromere Protein T (CENPT) is highly expressed in renal carcinoma (RCC) and promotes the tumor proliferation and metastasis of RCC. CENPT is found to be critical for regulating the glutathione (GSH) metabolism pathway because it interacts with γ-glutamyl-cysteine ligase catalytic subunit (GCLC), consequently reducing reactive oxygen species levels and inhibiting ferroptosis. Mechanistically, CENPT increases the catalytic activity of GCLC by directly binding to GCLC ∆213-424aa competitively with glutamate-cysteine ligase modifier subunit (GCLM), consequently induces the GSH synthesis. In turn, GSH increases CENPT expression via transcriptional regulation mediated by the transcription factor ATF2, forming a CENPT-GCLC-GSH feedback loop that enhances the pro-carcinogenic effect of this axis in RCC. Our study identifies CENPT a potential target for RCC via forming a CENPT-GCLC-GSH feedback loop to inhibit ferroptosis. This may support a promising treatment strategy for RCC.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"517"},"PeriodicalIF":8.1000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CENPT prevents renal cell carcinoma against ferroptosis by enhancing the synthesis of glutathione.\",\"authors\":\"Han Yang, Zongliang Zhang, Ninghan Feng, Kai Zhao, Yulian Zhang, Xinbao Yin, Guanqun Zhu, Zhenlin Wang, Xuechuan Yan, Xueyu Li, Zhaofeng Li, Qinglei Wang, Yixin Qi, Peng Zhao, Tianzhen He, Ke Wang\",\"doi\":\"10.1038/s41419-025-07848-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer is characterized by chromosomal instability (CIN), which leads to tumor heterogeneity and other malignant features. CIN is caused by abnormal centromere and kinetochore function, which results in aneuploidy, rearrangements, and micronucleus production. Centromere and kinetochore gene misexpression plays a vital role in tumor progression. Here we show that Centromere Protein T (CENPT) is highly expressed in renal carcinoma (RCC) and promotes the tumor proliferation and metastasis of RCC. CENPT is found to be critical for regulating the glutathione (GSH) metabolism pathway because it interacts with γ-glutamyl-cysteine ligase catalytic subunit (GCLC), consequently reducing reactive oxygen species levels and inhibiting ferroptosis. Mechanistically, CENPT increases the catalytic activity of GCLC by directly binding to GCLC ∆213-424aa competitively with glutamate-cysteine ligase modifier subunit (GCLM), consequently induces the GSH synthesis. In turn, GSH increases CENPT expression via transcriptional regulation mediated by the transcription factor ATF2, forming a CENPT-GCLC-GSH feedback loop that enhances the pro-carcinogenic effect of this axis in RCC. Our study identifies CENPT a potential target for RCC via forming a CENPT-GCLC-GSH feedback loop to inhibit ferroptosis. This may support a promising treatment strategy for RCC.</p>\",\"PeriodicalId\":9734,\"journal\":{\"name\":\"Cell Death & Disease\",\"volume\":\"16 1\",\"pages\":\"517\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death & Disease\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41419-025-07848-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07848-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

癌症的特点是染色体不稳定性(CIN),这导致肿瘤异质性和其他恶性特征。CIN是由着丝粒和着丝粒功能异常引起的,导致非整倍体、重排和微核产生。着丝粒和着丝粒基因的错误表达在肿瘤的进展中起着至关重要的作用。本研究显示着丝粒蛋白T (cenromere Protein T, CENPT)在肾癌(RCC)中高表达,并促进RCC的肿瘤增殖和转移。研究发现,CENPT对调节谷胱甘肽(GSH)代谢途径至关重要,因为它与γ-谷氨酰半胱氨酸连接酶催化亚基(GCLC)相互作用,从而降低活性氧水平并抑制铁凋亡。机制上,CENPT通过与谷氨酸-半胱氨酸连接酶修饰亚基(GCLM)直接结合GCLC∆213-424aa竞争性地增加GCLC的催化活性,从而诱导GSH合成。反过来,GSH通过转录因子ATF2介导的转录调控增加了CENPT的表达,形成了一个CENPT- gclc -GSH反馈回路,增强了该轴在RCC中的促癌作用。我们的研究通过形成CENPT- gclc - gsh反馈回路来抑制铁下垂,确定了CENPT是RCC的潜在靶点。这可能支持一种有希望的治疗碾压细胞的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CENPT prevents renal cell carcinoma against ferroptosis by enhancing the synthesis of glutathione.

Cancer is characterized by chromosomal instability (CIN), which leads to tumor heterogeneity and other malignant features. CIN is caused by abnormal centromere and kinetochore function, which results in aneuploidy, rearrangements, and micronucleus production. Centromere and kinetochore gene misexpression plays a vital role in tumor progression. Here we show that Centromere Protein T (CENPT) is highly expressed in renal carcinoma (RCC) and promotes the tumor proliferation and metastasis of RCC. CENPT is found to be critical for regulating the glutathione (GSH) metabolism pathway because it interacts with γ-glutamyl-cysteine ligase catalytic subunit (GCLC), consequently reducing reactive oxygen species levels and inhibiting ferroptosis. Mechanistically, CENPT increases the catalytic activity of GCLC by directly binding to GCLC ∆213-424aa competitively with glutamate-cysteine ligase modifier subunit (GCLM), consequently induces the GSH synthesis. In turn, GSH increases CENPT expression via transcriptional regulation mediated by the transcription factor ATF2, forming a CENPT-GCLC-GSH feedback loop that enhances the pro-carcinogenic effect of this axis in RCC. Our study identifies CENPT a potential target for RCC via forming a CENPT-GCLC-GSH feedback loop to inhibit ferroptosis. This may support a promising treatment strategy for RCC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信