基于深度学习的基于低温电子显微镜密度图的原子模型构建方法的综合调查和基准。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Chenwei Zhang, Anne Condon, Khanh Dao Duc
{"title":"基于深度学习的基于低温电子显微镜密度图的原子模型构建方法的综合调查和基准。","authors":"Chenwei Zhang, Anne Condon, Khanh Dao Duc","doi":"10.1093/bib/bbaf322","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in deep learning (DL) have recently led to new methods for automated construction of atomic models of proteins, from single-particle cryogenic electron microscopy (cryo-EM) density maps. We conduct a comprehensive survey of these methods, distinguishing between direct model building approaches that only use density maps, and indirect ones that integrate sequence-to-structure predictions from AlphaFold. To evaluate them with better precision, we refine standard existing metrics, and benchmark a subset of representative DL-methods against traditional physics-based approaches using 50 cryo-EM density maps at varying resolutions. Our findings demonstrate that overall, DL-based methods outperform traditional physics-based methods. Our benchmark also shows the benefit of integrating AlphaFold as it improved the completeness and accuracy of the model, although its dependency on available sequence information and limited training data may limit its usage.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12253957/pdf/","citationCount":"0","resultStr":"{\"title\":\"A comprehensive survey and benchmark of deep learning-based methods for atomic model building from cryo-electron microscopy density maps.\",\"authors\":\"Chenwei Zhang, Anne Condon, Khanh Dao Duc\",\"doi\":\"10.1093/bib/bbaf322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advancements in deep learning (DL) have recently led to new methods for automated construction of atomic models of proteins, from single-particle cryogenic electron microscopy (cryo-EM) density maps. We conduct a comprehensive survey of these methods, distinguishing between direct model building approaches that only use density maps, and indirect ones that integrate sequence-to-structure predictions from AlphaFold. To evaluate them with better precision, we refine standard existing metrics, and benchmark a subset of representative DL-methods against traditional physics-based approaches using 50 cryo-EM density maps at varying resolutions. Our findings demonstrate that overall, DL-based methods outperform traditional physics-based methods. Our benchmark also shows the benefit of integrating AlphaFold as it improved the completeness and accuracy of the model, although its dependency on available sequence information and limited training data may limit its usage.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12253957/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf322\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf322","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

深度学习(DL)的进步最近导致了单粒子低温电子显微镜(cryo-EM)密度图自动构建蛋白质原子模型的新方法。我们对这些方法进行了全面的调查,区分了仅使用密度图的直接模型构建方法和集成来自AlphaFold的序列到结构预测的间接模型构建方法。为了更精确地评估它们,我们改进了标准的现有指标,并使用50个不同分辨率的低温电镜密度图对具有代表性的dl方法子集进行基准测试,以对抗传统的基于物理的方法。我们的研究结果表明,总体而言,基于dl的方法优于传统的基于物理的方法。我们的基准测试也显示了集成AlphaFold的好处,因为它提高了模型的完整性和准确性,尽管它依赖于可用的序列信息和有限的训练数据可能会限制它的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comprehensive survey and benchmark of deep learning-based methods for atomic model building from cryo-electron microscopy density maps.

Advancements in deep learning (DL) have recently led to new methods for automated construction of atomic models of proteins, from single-particle cryogenic electron microscopy (cryo-EM) density maps. We conduct a comprehensive survey of these methods, distinguishing between direct model building approaches that only use density maps, and indirect ones that integrate sequence-to-structure predictions from AlphaFold. To evaluate them with better precision, we refine standard existing metrics, and benchmark a subset of representative DL-methods against traditional physics-based approaches using 50 cryo-EM density maps at varying resolutions. Our findings demonstrate that overall, DL-based methods outperform traditional physics-based methods. Our benchmark also shows the benefit of integrating AlphaFold as it improved the completeness and accuracy of the model, although its dependency on available sequence information and limited training data may limit its usage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信