{"title":"阿尔茨海默病中的神经胶质细胞:致病机制和治疗前沿。","authors":"Moumita Sil, Nabanita Mukherjee, Ishita Chatterjee, Ankita Ghosh, Arunava Goswami","doi":"10.1007/s12031-025-02379-8","DOIUrl":null,"url":null,"abstract":"<p><p>The rising incidence of brain diseases parallels the global trend of an aging population, with Alzheimer's disease (AD) being a leading neurodegenerative disorder characterized by memory loss, dementia, and cognitive decline. Despite extensive research, current treatments for AD remain largely symptomatic and have had limited success in halting disease progression, thereby shifting attention toward glial cells as promising therapeutic targets due to their emerging roles in AD pathogenesis. Astrocytes are involved in both beneficial and pathological processes in AD, such as cytokine secretion, Aβ removal, metabolic support, and tau pathology, with deficiency resulting in neuroinflammation and excitotoxicity. Microglia have dual functions in AD by phagocytosing amyloid plaques and limiting tau spread in initial phases but may develop a pro-inflammatory, neurodegenerative phenotype with progression of the disease. Oligodendrocytes and their precursors are involved in Aβ generation and myelin homeostasis, and their disturbance is responsible for white matter lesions and cognitive impairment, though their exact mechanisms are less clear. This review also examines emerging therapeutic strategies targeting glial cells, including modulating TREM2 pathways and novel drug candidates. These methods highlight the therapeutic value of the glial cells and provide valuable leads for furthering the treatment of AD by elucidating their changing roles in the course of the disease.</p>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"75 3","pages":"87"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glial Cells in Alzheimer's Disease: Pathogenic Mechanisms and Therapeutic Frontiers.\",\"authors\":\"Moumita Sil, Nabanita Mukherjee, Ishita Chatterjee, Ankita Ghosh, Arunava Goswami\",\"doi\":\"10.1007/s12031-025-02379-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rising incidence of brain diseases parallels the global trend of an aging population, with Alzheimer's disease (AD) being a leading neurodegenerative disorder characterized by memory loss, dementia, and cognitive decline. Despite extensive research, current treatments for AD remain largely symptomatic and have had limited success in halting disease progression, thereby shifting attention toward glial cells as promising therapeutic targets due to their emerging roles in AD pathogenesis. Astrocytes are involved in both beneficial and pathological processes in AD, such as cytokine secretion, Aβ removal, metabolic support, and tau pathology, with deficiency resulting in neuroinflammation and excitotoxicity. Microglia have dual functions in AD by phagocytosing amyloid plaques and limiting tau spread in initial phases but may develop a pro-inflammatory, neurodegenerative phenotype with progression of the disease. Oligodendrocytes and their precursors are involved in Aβ generation and myelin homeostasis, and their disturbance is responsible for white matter lesions and cognitive impairment, though their exact mechanisms are less clear. This review also examines emerging therapeutic strategies targeting glial cells, including modulating TREM2 pathways and novel drug candidates. These methods highlight the therapeutic value of the glial cells and provide valuable leads for furthering the treatment of AD by elucidating their changing roles in the course of the disease.</p>\",\"PeriodicalId\":652,\"journal\":{\"name\":\"Journal of Molecular Neuroscience\",\"volume\":\"75 3\",\"pages\":\"87\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12031-025-02379-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12031-025-02379-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Glial Cells in Alzheimer's Disease: Pathogenic Mechanisms and Therapeutic Frontiers.
The rising incidence of brain diseases parallels the global trend of an aging population, with Alzheimer's disease (AD) being a leading neurodegenerative disorder characterized by memory loss, dementia, and cognitive decline. Despite extensive research, current treatments for AD remain largely symptomatic and have had limited success in halting disease progression, thereby shifting attention toward glial cells as promising therapeutic targets due to their emerging roles in AD pathogenesis. Astrocytes are involved in both beneficial and pathological processes in AD, such as cytokine secretion, Aβ removal, metabolic support, and tau pathology, with deficiency resulting in neuroinflammation and excitotoxicity. Microglia have dual functions in AD by phagocytosing amyloid plaques and limiting tau spread in initial phases but may develop a pro-inflammatory, neurodegenerative phenotype with progression of the disease. Oligodendrocytes and their precursors are involved in Aβ generation and myelin homeostasis, and their disturbance is responsible for white matter lesions and cognitive impairment, though their exact mechanisms are less clear. This review also examines emerging therapeutic strategies targeting glial cells, including modulating TREM2 pathways and novel drug candidates. These methods highlight the therapeutic value of the glial cells and provide valuable leads for furthering the treatment of AD by elucidating their changing roles in the course of the disease.
期刊介绍:
The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.