{"title":"交通速度预测的自注意增强超图卷积网络","authors":"Yapeng Qi, Xia Zhao, Zhihong Li, Bo Shen","doi":"10.1049/itr2.70061","DOIUrl":null,"url":null,"abstract":"<p>Accurate traffic speed prediction is important in modern society for its effectiveness in route navigation, estimated time of arrival calculations and other practical applications. As the road network is complicated, traffic speed exhibits high-order correlations among regions, namely many-to-many spatial correlations, while also displaying long-term temporal dependencies. However, existing studies have not effectively modelled these characteristics. In this context, this study proposes a self-attention enhanced hypergraph convolution network (SE-HCN) for accurate speed prediction. The proposed SE-HCN consists of four modules. Specifically, we design a relation extraction module, which can obtain the similarity of road sections from geographical information and clustering. Subsequently, the model contains a spatial correlation hypergraph convolutional module and a long-term temporal dependencies transformer module to capture spatio-temporal features comprehensively. Two public real-world datasets - PeMSBAY and PeMSD7-M - were tested to validate the model's performance, and the result demonstrates that our approach achieved state-of-the-art performance.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70061","citationCount":"0","resultStr":"{\"title\":\"A Self-Attention Enhanced Hypergraph Convolution Network for Traffic Speed Forecasting\",\"authors\":\"Yapeng Qi, Xia Zhao, Zhihong Li, Bo Shen\",\"doi\":\"10.1049/itr2.70061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate traffic speed prediction is important in modern society for its effectiveness in route navigation, estimated time of arrival calculations and other practical applications. As the road network is complicated, traffic speed exhibits high-order correlations among regions, namely many-to-many spatial correlations, while also displaying long-term temporal dependencies. However, existing studies have not effectively modelled these characteristics. In this context, this study proposes a self-attention enhanced hypergraph convolution network (SE-HCN) for accurate speed prediction. The proposed SE-HCN consists of four modules. Specifically, we design a relation extraction module, which can obtain the similarity of road sections from geographical information and clustering. Subsequently, the model contains a spatial correlation hypergraph convolutional module and a long-term temporal dependencies transformer module to capture spatio-temporal features comprehensively. Two public real-world datasets - PeMSBAY and PeMSD7-M - were tested to validate the model's performance, and the result demonstrates that our approach achieved state-of-the-art performance.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70061\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.70061\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.70061","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Self-Attention Enhanced Hypergraph Convolution Network for Traffic Speed Forecasting
Accurate traffic speed prediction is important in modern society for its effectiveness in route navigation, estimated time of arrival calculations and other practical applications. As the road network is complicated, traffic speed exhibits high-order correlations among regions, namely many-to-many spatial correlations, while also displaying long-term temporal dependencies. However, existing studies have not effectively modelled these characteristics. In this context, this study proposes a self-attention enhanced hypergraph convolution network (SE-HCN) for accurate speed prediction. The proposed SE-HCN consists of four modules. Specifically, we design a relation extraction module, which can obtain the similarity of road sections from geographical information and clustering. Subsequently, the model contains a spatial correlation hypergraph convolutional module and a long-term temporal dependencies transformer module to capture spatio-temporal features comprehensively. Two public real-world datasets - PeMSBAY and PeMSD7-M - were tested to validate the model's performance, and the result demonstrates that our approach achieved state-of-the-art performance.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf