基于层叠集成学习的车联网入侵检测系统

IF 0.5 Q4 TELECOMMUNICATIONS
Huibin Xu, Long Fang
{"title":"基于层叠集成学习的车联网入侵检测系统","authors":"Huibin Xu,&nbsp;Long Fang","doi":"10.1002/itl2.70046","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Vehicle-to-Everything (V2X) technologies enable ubiquitous connectivity in Internet of Vehicles (IoV) systems, yet expose critical vulnerabilities to cyber threats. While cryptographic mechanisms provide essential safeguards, their limitations in dynamic vehicular environments necessitate Intrusion Detection Systems (IDS) for comprehensive defense. This study proposes an intrusion detection model named SFGL, a stacking ensemble framework integrating Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and Bidirectional Long Short-Term Memory (Bi-LSTM) algorithms. The model employs feature selection to optimize computational efficiency. Adaptive Synthetic Sampling (ADASYN) and Tomek-Links undersampling methods are jointly employed to resolve class imbalance in training data. Evaluated on CICIDS2017 and NSL-KDD datasets, SFGL achieves state-of-the-art performance with 99.5% F1-score across multiple attack categories while reducing inference latency by 37% through dimensionality reduction.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 5","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Stacking Ensemble Learning-Based Intrusion Detection System for Internet of Vehicles\",\"authors\":\"Huibin Xu,&nbsp;Long Fang\",\"doi\":\"10.1002/itl2.70046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Vehicle-to-Everything (V2X) technologies enable ubiquitous connectivity in Internet of Vehicles (IoV) systems, yet expose critical vulnerabilities to cyber threats. While cryptographic mechanisms provide essential safeguards, their limitations in dynamic vehicular environments necessitate Intrusion Detection Systems (IDS) for comprehensive defense. This study proposes an intrusion detection model named SFGL, a stacking ensemble framework integrating Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and Bidirectional Long Short-Term Memory (Bi-LSTM) algorithms. The model employs feature selection to optimize computational efficiency. Adaptive Synthetic Sampling (ADASYN) and Tomek-Links undersampling methods are jointly employed to resolve class imbalance in training data. Evaluated on CICIDS2017 and NSL-KDD datasets, SFGL achieves state-of-the-art performance with 99.5% F1-score across multiple attack categories while reducing inference latency by 37% through dimensionality reduction.</p>\\n </div>\",\"PeriodicalId\":100725,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":\"8 5\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

车联网(V2X)技术使车联网(IoV)系统实现了无处不在的连接,但也暴露了网络威胁的关键漏洞。虽然加密机制提供了必要的保护,但其在动态车辆环境中的局限性要求入侵检测系统(IDS)进行全面防御。本文提出了一种集成随机森林(RF)、梯度增强决策树(GBDT)和双向长短期记忆(Bi-LSTM)算法的堆叠集成框架——SFGL入侵检测模型。该模型采用特征选择优化计算效率。采用自适应合成采样(ADASYN)和Tomek-Links欠采样方法共同解决训练数据的类不平衡问题。在CICIDS2017和NSL-KDD数据集上进行评估后,SFGL在多个攻击类别中获得了99.5%的f1得分,同时通过降维将推理延迟减少了37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Stacking Ensemble Learning-Based Intrusion Detection System for Internet of Vehicles

Vehicle-to-Everything (V2X) technologies enable ubiquitous connectivity in Internet of Vehicles (IoV) systems, yet expose critical vulnerabilities to cyber threats. While cryptographic mechanisms provide essential safeguards, their limitations in dynamic vehicular environments necessitate Intrusion Detection Systems (IDS) for comprehensive defense. This study proposes an intrusion detection model named SFGL, a stacking ensemble framework integrating Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and Bidirectional Long Short-Term Memory (Bi-LSTM) algorithms. The model employs feature selection to optimize computational efficiency. Adaptive Synthetic Sampling (ADASYN) and Tomek-Links undersampling methods are jointly employed to resolve class imbalance in training data. Evaluated on CICIDS2017 and NSL-KDD datasets, SFGL achieves state-of-the-art performance with 99.5% F1-score across multiple attack categories while reducing inference latency by 37% through dimensionality reduction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信