Xianfang Wu, Xinyue Zhu, Minggao Tan, Houlin Liu, Jie Ge
{"title":"光伏灌溉系统喷嘴结构优化","authors":"Xianfang Wu, Xinyue Zhu, Minggao Tan, Houlin Liu, Jie Ge","doi":"10.1002/ird.3058","DOIUrl":null,"url":null,"abstract":"<p>On the basis of the significant impact of the sprinkler nozzle structure in photovoltaic irrigation systems, the nozzle parameters are optimised to improve sprinkler adaptability and irrigation uniformity under different light intensities. An experimental test and numerical simulation were conducted to analyse the influence of nozzles with distinct parameters on the spray irrigation effect. Taking the irrigation uniformity coefficient as the optimisation goal and the nozzle outlet shape, outlet area and straight flow channel length as the optimisation variables, an orthogonal experimental design was employed, and the optimal solution was obtained via range analysis. The experimental results indicate that the sprinkler performs best when the outlet shape is circular, the nozzle outlet area is 7 mm<sup>2</sup> and the flow channel length is 2 mm. The optimal nozzle characteristics were tested and compared with those of the original design, and numerical simulation was used to demonstrate the optimised internal flow mechanism. The results demonstrate that the optimised flow rate and spray range are improved, and the working pressure and rotation period are significantly reduced, enabling the system to adapt to a more extensive range of light intensities. The radial water distribution structure is better, and the combined application rate and uniformity coefficient are also significantly improved. In addition, the sprinkler outlet speed is more consistent, and the area of the high-speed zone in the spray plate increases, which is conducive to reducing energy loss and enhancing sprinkler irrigation uniformity.</p><p>Résumé</p><p>Sur la base de l'impact significatif exercé par la structure des buses d'aspersion sur les systèmes d'irrigation photovoltaïques, les paramètres des buses d'aspersion sont optimisés pour améliorer l'adaptabilité des buses d'aspersion et l'uniformité de l'irrigation sous différentes intensités lumineuses. Un essai expérimental et une simulation numérique ont été effectués pour analyser l'influence des buses avec des paramètres distincts sur l'effet d'irrigation par pulvérisation. En prenant le coefficient d'uniformité d'irrigation comme objectif d'optimisation et la forme de sortie de la buse, la zone de sortie et la longueur du canal d'écoulement droit comme variables d'optimisation, un plan expérimental orthogonal a été utilisé et la solution optimale a été obtenue par l'analyse de la portée. Les résultats expérimentaux indiquent que l'asperseur fonctionne mieux quand la forme de sortie est circulaire, que la surface de sortie de la buse est de 7 mm<sup>2</sup> et que la longueur du canal d'écoulement est de 2 mm. Les caractéristiques optimales de la buse ont été testées et comparées à celles de la conception originale, et la simulation numérique a été utilisée pour démontrer le mécanisme optimisé de l'écoulement interne. Les résultats montrent que le débit et la portée de pulvérisation optimisés sont améliorés et que la pression de service et la durée de rotation sont considérablement réduites, ce qui permet au système de s'adapter à une gamme plus étendue des intensités lumineuses. La structure de distribution radiale de l'eau est meilleure, et le taux d'application combiné ainsi que le coefficient d'uniformité sont également considérablement améliorés. En outre, la vitesse de sortie des asperseurs est plus constante et la zone à grande vitesse dans la plaque de pulvérisation augmente, ce qui est propice à la réduction des pertes d'énergie et à l'amélioration de l'uniformité de l'irrigation par aspersion.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"74 3","pages":"900-914"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nozzle structure optimisation in a photovoltaic irrigation system\",\"authors\":\"Xianfang Wu, Xinyue Zhu, Minggao Tan, Houlin Liu, Jie Ge\",\"doi\":\"10.1002/ird.3058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>On the basis of the significant impact of the sprinkler nozzle structure in photovoltaic irrigation systems, the nozzle parameters are optimised to improve sprinkler adaptability and irrigation uniformity under different light intensities. An experimental test and numerical simulation were conducted to analyse the influence of nozzles with distinct parameters on the spray irrigation effect. Taking the irrigation uniformity coefficient as the optimisation goal and the nozzle outlet shape, outlet area and straight flow channel length as the optimisation variables, an orthogonal experimental design was employed, and the optimal solution was obtained via range analysis. The experimental results indicate that the sprinkler performs best when the outlet shape is circular, the nozzle outlet area is 7 mm<sup>2</sup> and the flow channel length is 2 mm. The optimal nozzle characteristics were tested and compared with those of the original design, and numerical simulation was used to demonstrate the optimised internal flow mechanism. The results demonstrate that the optimised flow rate and spray range are improved, and the working pressure and rotation period are significantly reduced, enabling the system to adapt to a more extensive range of light intensities. The radial water distribution structure is better, and the combined application rate and uniformity coefficient are also significantly improved. In addition, the sprinkler outlet speed is more consistent, and the area of the high-speed zone in the spray plate increases, which is conducive to reducing energy loss and enhancing sprinkler irrigation uniformity.</p><p>Résumé</p><p>Sur la base de l'impact significatif exercé par la structure des buses d'aspersion sur les systèmes d'irrigation photovoltaïques, les paramètres des buses d'aspersion sont optimisés pour améliorer l'adaptabilité des buses d'aspersion et l'uniformité de l'irrigation sous différentes intensités lumineuses. Un essai expérimental et une simulation numérique ont été effectués pour analyser l'influence des buses avec des paramètres distincts sur l'effet d'irrigation par pulvérisation. En prenant le coefficient d'uniformité d'irrigation comme objectif d'optimisation et la forme de sortie de la buse, la zone de sortie et la longueur du canal d'écoulement droit comme variables d'optimisation, un plan expérimental orthogonal a été utilisé et la solution optimale a été obtenue par l'analyse de la portée. Les résultats expérimentaux indiquent que l'asperseur fonctionne mieux quand la forme de sortie est circulaire, que la surface de sortie de la buse est de 7 mm<sup>2</sup> et que la longueur du canal d'écoulement est de 2 mm. Les caractéristiques optimales de la buse ont été testées et comparées à celles de la conception originale, et la simulation numérique a été utilisée pour démontrer le mécanisme optimisé de l'écoulement interne. Les résultats montrent que le débit et la portée de pulvérisation optimisés sont améliorés et que la pression de service et la durée de rotation sont considérablement réduites, ce qui permet au système de s'adapter à une gamme plus étendue des intensités lumineuses. La structure de distribution radiale de l'eau est meilleure, et le taux d'application combiné ainsi que le coefficient d'uniformité sont également considérablement améliorés. En outre, la vitesse de sortie des asperseurs est plus constante et la zone à grande vitesse dans la plaque de pulvérisation augmente, ce qui est propice à la réduction des pertes d'énergie et à l'amélioration de l'uniformité de l'irrigation par aspersion.</p>\",\"PeriodicalId\":14848,\"journal\":{\"name\":\"Irrigation and Drainage\",\"volume\":\"74 3\",\"pages\":\"900-914\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irrigation and Drainage\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ird.3058\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irrigation and Drainage","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ird.3058","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
摘要
针对光伏灌溉系统中喷头结构的显著影响,优化喷头参数,提高喷头在不同光强下的适应性和灌溉均匀性。通过试验和数值模拟分析了不同参数喷嘴对喷灌效果的影响。以灌溉均匀系数为优化目标,以喷管出口形状、出口面积和直流道长度为优化变量,采用正交试验设计,通过极差分析得到最优解。实验结果表明,当喷头出口形状为圆形,喷头出口面积为7 mm2,流道长度为2 mm时,喷头性能最佳。对优化后的喷管特性进行了测试,并与原设计进行了比较,并用数值模拟验证了优化后的内部流动机理。结果表明,优化后的流量和喷雾范围得到了提高,工作压力和旋转周期显著降低,使系统能够适应更广泛的光强范围。径向配水结构较好,复合施水量和均匀系数也显著提高。此外,喷头出口速度更加一致,喷板内高速区面积增大,有利于减少能量损失,增强喷灌均匀性。rs - samsamuthra - base de l'impact - significatime - exercisere - strucla la strucles les systems d'irrigation - photovoltaïques, rs - paramtres res ds - persingsass - pour - amaclier - adapadapilise - persingsass - persingsass - uniformitsass - iriringsass - diffsamuthresintensites - samuise - lumineuses。联合国essai实验等一个模拟numerique安大略省的高频effectues倒分析器影响des公交车用des产品独特的苏尔l 'effet d 'irrigation par磨碎。她以前系数d 'uniformite d 'irrigation像目的d 'optimisation et de出击de la la印版buse,拉杜区德出击et la小说运河d 'ecoulement所有权就像变量d 'optimisation,联合国计划实验正交利用外星人那儿解决optimale疾病obtenue分析de la矿物相媲美。3 .单独的、独立的、有弹性的、有弹性的、有弹性的、有弹性的、有弹性的、有弹性的、有弹性的、有弹性的、有弹性的、有弹性的、有弹性的、有弹性的、有弹性的、有弹性的、有弹性的、有弹性的、有弹性的。从最优的情况来看,所有的和其他所有的和其他所有的和其他所有的和其他所有的和其他所有的和其他所有的和其他所有的和所有的和所有的和所有的和所有的。例如,管理系统的管理系统、管理系统的管理系统、管理系统的管理系统、管理系统的管理系统、管理系统的管理系统、管理系统的管理系统、管理系统的管理系统、管理系统的管理系统、管理系统的管理系统、管理系统的管理系统、管理系统的管理系统、管理系统的管理系统、管理系统的管理系统以及管理系统的管理系统。de La结构分布桡腕骨de威尼斯est中,le taux d 'application结合,系数d 'uniformite是合理considerablement ameliores。因此,在整个过程中,将整个过程和整个过程结合在一起,将整个过程和整个过程结合在一起,将整个过程和整个过程结合在一起,将整个过程和整个过程结合在一起。
Nozzle structure optimisation in a photovoltaic irrigation system
On the basis of the significant impact of the sprinkler nozzle structure in photovoltaic irrigation systems, the nozzle parameters are optimised to improve sprinkler adaptability and irrigation uniformity under different light intensities. An experimental test and numerical simulation were conducted to analyse the influence of nozzles with distinct parameters on the spray irrigation effect. Taking the irrigation uniformity coefficient as the optimisation goal and the nozzle outlet shape, outlet area and straight flow channel length as the optimisation variables, an orthogonal experimental design was employed, and the optimal solution was obtained via range analysis. The experimental results indicate that the sprinkler performs best when the outlet shape is circular, the nozzle outlet area is 7 mm2 and the flow channel length is 2 mm. The optimal nozzle characteristics were tested and compared with those of the original design, and numerical simulation was used to demonstrate the optimised internal flow mechanism. The results demonstrate that the optimised flow rate and spray range are improved, and the working pressure and rotation period are significantly reduced, enabling the system to adapt to a more extensive range of light intensities. The radial water distribution structure is better, and the combined application rate and uniformity coefficient are also significantly improved. In addition, the sprinkler outlet speed is more consistent, and the area of the high-speed zone in the spray plate increases, which is conducive to reducing energy loss and enhancing sprinkler irrigation uniformity.
Résumé
Sur la base de l'impact significatif exercé par la structure des buses d'aspersion sur les systèmes d'irrigation photovoltaïques, les paramètres des buses d'aspersion sont optimisés pour améliorer l'adaptabilité des buses d'aspersion et l'uniformité de l'irrigation sous différentes intensités lumineuses. Un essai expérimental et une simulation numérique ont été effectués pour analyser l'influence des buses avec des paramètres distincts sur l'effet d'irrigation par pulvérisation. En prenant le coefficient d'uniformité d'irrigation comme objectif d'optimisation et la forme de sortie de la buse, la zone de sortie et la longueur du canal d'écoulement droit comme variables d'optimisation, un plan expérimental orthogonal a été utilisé et la solution optimale a été obtenue par l'analyse de la portée. Les résultats expérimentaux indiquent que l'asperseur fonctionne mieux quand la forme de sortie est circulaire, que la surface de sortie de la buse est de 7 mm2 et que la longueur du canal d'écoulement est de 2 mm. Les caractéristiques optimales de la buse ont été testées et comparées à celles de la conception originale, et la simulation numérique a été utilisée pour démontrer le mécanisme optimisé de l'écoulement interne. Les résultats montrent que le débit et la portée de pulvérisation optimisés sont améliorés et que la pression de service et la durée de rotation sont considérablement réduites, ce qui permet au système de s'adapter à une gamme plus étendue des intensités lumineuses. La structure de distribution radiale de l'eau est meilleure, et le taux d'application combiné ainsi que le coefficient d'uniformité sont également considérablement améliorés. En outre, la vitesse de sortie des asperseurs est plus constante et la zone à grande vitesse dans la plaque de pulvérisation augmente, ce qui est propice à la réduction des pertes d'énergie et à l'amélioration de l'uniformité de l'irrigation par aspersion.
期刊介绍:
Human intervention in the control of water for sustainable agricultural development involves the application of technology and management approaches to: (i) provide the appropriate quantities of water when it is needed by the crops, (ii) prevent salinisation and water-logging of the root zone, (iii) protect land from flooding, and (iv) maximise the beneficial use of water by appropriate allocation, conservation and reuse. All this has to be achieved within a framework of economic, social and environmental constraints. The Journal, therefore, covers a wide range of subjects, advancement in which, through high quality papers in the Journal, will make a significant contribution to the enormous task of satisfying the needs of the world’s ever-increasing population. The Journal also publishes book reviews.