弱双模拟同余的非有限公理化性

IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Luca Aceto , Valentina Castiglioni , Anna Ingólfsdóttir , Bas Luttik
{"title":"弱双模拟同余的非有限公理化性","authors":"Luca Aceto ,&nbsp;Valentina Castiglioni ,&nbsp;Anna Ingólfsdóttir ,&nbsp;Bas Luttik","doi":"10.1016/j.tcs.2025.115453","DOIUrl":null,"url":null,"abstract":"<div><div>We study the axiomatisability of CCS parallel composition operator modulo weak bisimulation-based congruences. Specifically, we prove that all congruences that are coarser than rooted branching bisimilarity, and finer than rooted weak bisimilarity, do not admit a finite equational axiomatisation over the recursion, restriction, and relabelling free fragment of CCS.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1054 ","pages":"Article 115453"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non finite axiomatisability of weak bisimulation-based congruences\",\"authors\":\"Luca Aceto ,&nbsp;Valentina Castiglioni ,&nbsp;Anna Ingólfsdóttir ,&nbsp;Bas Luttik\",\"doi\":\"10.1016/j.tcs.2025.115453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the axiomatisability of CCS parallel composition operator modulo weak bisimulation-based congruences. Specifically, we prove that all congruences that are coarser than rooted branching bisimilarity, and finer than rooted weak bisimilarity, do not admit a finite equational axiomatisation over the recursion, restriction, and relabelling free fragment of CCS.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1054 \",\"pages\":\"Article 115453\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397525003913\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525003913","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

研究了CCS并行组合算子模基于弱双模拟的同余的公构性。具体地说,我们证明了所有比有根分支双相似更粗,比有根弱双相似更细的同余,在CCS的递归、限制和重标记自由片段上不承认有限等式公理化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non finite axiomatisability of weak bisimulation-based congruences
We study the axiomatisability of CCS parallel composition operator modulo weak bisimulation-based congruences. Specifically, we prove that all congruences that are coarser than rooted branching bisimilarity, and finer than rooted weak bisimilarity, do not admit a finite equational axiomatisation over the recursion, restriction, and relabelling free fragment of CCS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信