离散非线性系统的可调分数阶不动点状态估计

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Lorenz Josue Oliva-Gonzalez, Rafael Martínez-Guerra
{"title":"离散非线性系统的可调分数阶不动点状态估计","authors":"Lorenz Josue Oliva-Gonzalez,&nbsp;Rafael Martínez-Guerra","doi":"10.1016/j.chaos.2025.116825","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an approach to deal with the state estimation problem in discrete-time nonlinear systems. The approach translates the state estimation problem into a root-finding problem; hence, a state estimator based on a numerical method is designed. In particular, we consider a modification of the conformable fractional-order vector Newton–Raphson method. This fractional-order numerical method has been introduced recently and presents remarkable properties compared to its integer-order version. For instance, it exhibits low computational cost, fewer iterations to achieve convergence, and mitigates divergence problems. Therefore, the proposed state estimator inherits these properties, making it an attractive alternative. On the other hand, the convergence of the state estimator is analyzed using an extension of the Banach fixed-point theorem, providing convergence conditions. Eventually, several numerical simulations are performed to evaluate the proposed approach.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116825"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformable fractional-order fixed-point state estimator for discrete-time nonlinear systems\",\"authors\":\"Lorenz Josue Oliva-Gonzalez,&nbsp;Rafael Martínez-Guerra\",\"doi\":\"10.1016/j.chaos.2025.116825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents an approach to deal with the state estimation problem in discrete-time nonlinear systems. The approach translates the state estimation problem into a root-finding problem; hence, a state estimator based on a numerical method is designed. In particular, we consider a modification of the conformable fractional-order vector Newton–Raphson method. This fractional-order numerical method has been introduced recently and presents remarkable properties compared to its integer-order version. For instance, it exhibits low computational cost, fewer iterations to achieve convergence, and mitigates divergence problems. Therefore, the proposed state estimator inherits these properties, making it an attractive alternative. On the other hand, the convergence of the state estimator is analyzed using an extension of the Banach fixed-point theorem, providing convergence conditions. Eventually, several numerical simulations are performed to evaluate the proposed approach.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116825\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925008380\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925008380","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种处理离散非线性系统状态估计问题的方法。该方法将状态估计问题转化为寻根问题;为此,设计了一种基于数值方法的状态估计器。特别地,我们考虑了对符合分数阶矢量牛顿-拉夫森方法的一种修正。这种分数阶数值方法是最近才引入的,与整数阶方法相比,它表现出了显著的特性。例如,它的计算成本低,实现收敛的迭代次数少,并且减轻了发散问题。因此,建议的状态估计器继承了这些属性,使其成为一个有吸引力的替代方案。另一方面,利用Banach不动点定理的推广,分析了状态估计量的收敛性,给出了收敛条件。最后,进行了几个数值模拟来评估所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformable fractional-order fixed-point state estimator for discrete-time nonlinear systems
This paper presents an approach to deal with the state estimation problem in discrete-time nonlinear systems. The approach translates the state estimation problem into a root-finding problem; hence, a state estimator based on a numerical method is designed. In particular, we consider a modification of the conformable fractional-order vector Newton–Raphson method. This fractional-order numerical method has been introduced recently and presents remarkable properties compared to its integer-order version. For instance, it exhibits low computational cost, fewer iterations to achieve convergence, and mitigates divergence problems. Therefore, the proposed state estimator inherits these properties, making it an attractive alternative. On the other hand, the convergence of the state estimator is analyzed using an extension of the Banach fixed-point theorem, providing convergence conditions. Eventually, several numerical simulations are performed to evaluate the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信