{"title":"小肠细菌加速阿司匹林引起的小肠损伤","authors":"Fumio Kakizaki , Teruo Miyazaki , Hajime Ueda , Junichi Iwamoto , Akira Honda , Tadashi Ikegami","doi":"10.1016/j.yexmp.2025.104984","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Small intestinal mucosal injuries are observed during treatment with enteric-coated, low-dose aspirin (LDA) through uncertain mechanism(s). Because aspirin (acetylsalicylic acid, ASA) is an acetylated form of the highly cytotoxic salicylic acid (SA), we hypothesized that SA deacetylated by esterases in the small intestine directly causes mucosal injuries. This study explored the mechanism(s) of ASA deacetylation to SA in the small intestinal environment.</div></div><div><h3>Methods</h3><div>ASA was added to the x, and deacetylation of added ASA and cell damage were evaluated. To explore the ASA deacetylation mechanism(s) in the intestinal environment, ASA was incubated with different pH phosphate buffers (4.01–9.10), pancreatic enzymes, homogenates of pancreas and IEC-6 cell, and caecum bacterial suspension (CBS). ASA and CBS were co-injected into the murine duodenum, and small intestinal damage was evaluated after an hour by histological observation.</div></div><div><h3>Results</h3><div>Intestinal cell damage was caused dependently on the deacetylation rate of added ASA to SA in the cell and culture media. In vitro, almost ASA was not deacetylated by incubation with different pH buffer, pancreatic enzymes, or IEC-6 cell homogenate, but deacetylation of ASA was significantly promoted with CBS. ASA deacetylation by bacterial esterases(s) was confirmed by adding an esterase-specific inhibitor, potassium fluoride. Furthermore, severe injuries throughout the entire murine small intestine were found after co-injection of ASA and CBS, but not after ASA alone.</div></div><div><h3>Conclusions</h3><div>Enteric-coated, LDA-induced mucosal injuries in the small intestine are mainly caused by direct cytotoxicity of SA deacetylated by enterobacterial esterase in the small intestine.</div></div>","PeriodicalId":12176,"journal":{"name":"Experimental and molecular pathology","volume":"143 ","pages":"Article 104984"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small intestinal bacteria accelerate aspirin-induced small intestinal injuries\",\"authors\":\"Fumio Kakizaki , Teruo Miyazaki , Hajime Ueda , Junichi Iwamoto , Akira Honda , Tadashi Ikegami\",\"doi\":\"10.1016/j.yexmp.2025.104984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Small intestinal mucosal injuries are observed during treatment with enteric-coated, low-dose aspirin (LDA) through uncertain mechanism(s). Because aspirin (acetylsalicylic acid, ASA) is an acetylated form of the highly cytotoxic salicylic acid (SA), we hypothesized that SA deacetylated by esterases in the small intestine directly causes mucosal injuries. This study explored the mechanism(s) of ASA deacetylation to SA in the small intestinal environment.</div></div><div><h3>Methods</h3><div>ASA was added to the x, and deacetylation of added ASA and cell damage were evaluated. To explore the ASA deacetylation mechanism(s) in the intestinal environment, ASA was incubated with different pH phosphate buffers (4.01–9.10), pancreatic enzymes, homogenates of pancreas and IEC-6 cell, and caecum bacterial suspension (CBS). ASA and CBS were co-injected into the murine duodenum, and small intestinal damage was evaluated after an hour by histological observation.</div></div><div><h3>Results</h3><div>Intestinal cell damage was caused dependently on the deacetylation rate of added ASA to SA in the cell and culture media. In vitro, almost ASA was not deacetylated by incubation with different pH buffer, pancreatic enzymes, or IEC-6 cell homogenate, but deacetylation of ASA was significantly promoted with CBS. ASA deacetylation by bacterial esterases(s) was confirmed by adding an esterase-specific inhibitor, potassium fluoride. Furthermore, severe injuries throughout the entire murine small intestine were found after co-injection of ASA and CBS, but not after ASA alone.</div></div><div><h3>Conclusions</h3><div>Enteric-coated, LDA-induced mucosal injuries in the small intestine are mainly caused by direct cytotoxicity of SA deacetylated by enterobacterial esterase in the small intestine.</div></div>\",\"PeriodicalId\":12176,\"journal\":{\"name\":\"Experimental and molecular pathology\",\"volume\":\"143 \",\"pages\":\"Article 104984\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental and molecular pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014480025000346\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and molecular pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014480025000346","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
Small intestinal bacteria accelerate aspirin-induced small intestinal injuries
Background
Small intestinal mucosal injuries are observed during treatment with enteric-coated, low-dose aspirin (LDA) through uncertain mechanism(s). Because aspirin (acetylsalicylic acid, ASA) is an acetylated form of the highly cytotoxic salicylic acid (SA), we hypothesized that SA deacetylated by esterases in the small intestine directly causes mucosal injuries. This study explored the mechanism(s) of ASA deacetylation to SA in the small intestinal environment.
Methods
ASA was added to the x, and deacetylation of added ASA and cell damage were evaluated. To explore the ASA deacetylation mechanism(s) in the intestinal environment, ASA was incubated with different pH phosphate buffers (4.01–9.10), pancreatic enzymes, homogenates of pancreas and IEC-6 cell, and caecum bacterial suspension (CBS). ASA and CBS were co-injected into the murine duodenum, and small intestinal damage was evaluated after an hour by histological observation.
Results
Intestinal cell damage was caused dependently on the deacetylation rate of added ASA to SA in the cell and culture media. In vitro, almost ASA was not deacetylated by incubation with different pH buffer, pancreatic enzymes, or IEC-6 cell homogenate, but deacetylation of ASA was significantly promoted with CBS. ASA deacetylation by bacterial esterases(s) was confirmed by adding an esterase-specific inhibitor, potassium fluoride. Furthermore, severe injuries throughout the entire murine small intestine were found after co-injection of ASA and CBS, but not after ASA alone.
Conclusions
Enteric-coated, LDA-induced mucosal injuries in the small intestine are mainly caused by direct cytotoxicity of SA deacetylated by enterobacterial esterase in the small intestine.
期刊介绍:
Under new editorial leadership, Experimental and Molecular Pathology presents original articles on disease processes in relation to structural and biochemical alterations in mammalian tissues and fluids and on the application of newer techniques of molecular biology to problems of pathology in humans and other animals. The journal also publishes selected interpretive synthesis reviews by bench level investigators working at the "cutting edge" of contemporary research in pathology. In addition, special thematic issues present original research reports that unravel some of Nature''s most jealously guarded secrets on the pathologic basis of disease.
Research Areas include: Stem cells; Neoangiogenesis; Molecular diagnostics; Polymerase chain reaction; In situ hybridization; DNA sequencing; Cell receptors; Carcinogenesis; Pathobiology of neoplasia; Complex infectious diseases; Transplantation; Cytokines; Flow cytomeric analysis; Inflammation; Cellular injury; Immunology and hypersensitivity; Athersclerosis.