路径覆盖只使用短路径

IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Mingyang Gong , Guangting Chen , Zhi-Zhong Chen , Guohui Lin , Riki Uchida
{"title":"路径覆盖只使用短路径","authors":"Mingyang Gong ,&nbsp;Guangting Chen ,&nbsp;Zhi-Zhong Chen ,&nbsp;Guohui Lin ,&nbsp;Riki Uchida","doi":"10.1016/j.tcs.2025.115455","DOIUrl":null,"url":null,"abstract":"<div><div>We study a variant of the well-known <em>Path Cover</em> problem where the candidate paths in a solution have orders up to a fixed integer <em>k</em>. In Path Cover, one finds a minimum number of vertex-disjoint paths in an input graph to cover all the vertices; in our variant, not all paths but only those short ones, i.e., containing up to <em>k</em> vertices, can be used as candidates. The problem is NP-hard when <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>; in the literature, there exist quite a number of approximation algorithms, especially for small <em>k</em>'s. We present an improved <span><math><mfrac><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>-approximation algorithm for <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mn>6</mn><mo>,</mo><mn>7</mn><mo>,</mo><mn>8</mn><mo>}</mo></math></span>, an improved <span><math><mfrac><mrow><mn>55</mn></mrow><mrow><mn>31</mn></mrow></mfrac></math></span>-approximation algorithm for <span><math><mi>k</mi><mo>=</mo><mn>5</mn></math></span>, and an improved <span><math><mfrac><mrow><mn>8</mn></mrow><mrow><mn>5</mn></mrow></mfrac></math></span>-approximation algorithm for <span><math><mi>k</mi><mo>=</mo><mn>4</mn></math></span>. The novelty inside these improved algorithms is observing a close connection between an optimal path cover and a certain polynomial-time computed edge set.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1054 ","pages":"Article 115455"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path cover using only short paths\",\"authors\":\"Mingyang Gong ,&nbsp;Guangting Chen ,&nbsp;Zhi-Zhong Chen ,&nbsp;Guohui Lin ,&nbsp;Riki Uchida\",\"doi\":\"10.1016/j.tcs.2025.115455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study a variant of the well-known <em>Path Cover</em> problem where the candidate paths in a solution have orders up to a fixed integer <em>k</em>. In Path Cover, one finds a minimum number of vertex-disjoint paths in an input graph to cover all the vertices; in our variant, not all paths but only those short ones, i.e., containing up to <em>k</em> vertices, can be used as candidates. The problem is NP-hard when <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>; in the literature, there exist quite a number of approximation algorithms, especially for small <em>k</em>'s. We present an improved <span><math><mfrac><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>-approximation algorithm for <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mn>6</mn><mo>,</mo><mn>7</mn><mo>,</mo><mn>8</mn><mo>}</mo></math></span>, an improved <span><math><mfrac><mrow><mn>55</mn></mrow><mrow><mn>31</mn></mrow></mfrac></math></span>-approximation algorithm for <span><math><mi>k</mi><mo>=</mo><mn>5</mn></math></span>, and an improved <span><math><mfrac><mrow><mn>8</mn></mrow><mrow><mn>5</mn></mrow></mfrac></math></span>-approximation algorithm for <span><math><mi>k</mi><mo>=</mo><mn>4</mn></math></span>. The novelty inside these improved algorithms is observing a close connection between an optimal path cover and a certain polynomial-time computed edge set.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1054 \",\"pages\":\"Article 115455\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397525003937\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525003937","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了众所周知的路径覆盖问题的一个变体,其中解中的候选路径的阶数最高为固定整数k。在路径覆盖问题中,人们在输入图中找到覆盖所有顶点的最小顶点不相交路径数量;在我们的变体中,不是所有的路径,而只有那些短的路径,即包含最多k个顶点的路径,可以用作候选路径。当k≥3时,问题是np困难的;在文献中,存在相当多的近似算法,特别是对于较小的k。我们提出了k∈{6,7,8}的改进k3逼近算法,k=5的改进5531逼近算法,k=4的改进85逼近算法。这些改进算法的新颖之处在于观察到最优路径覆盖与某个多项式时间计算的边缘集之间的密切联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path cover using only short paths
We study a variant of the well-known Path Cover problem where the candidate paths in a solution have orders up to a fixed integer k. In Path Cover, one finds a minimum number of vertex-disjoint paths in an input graph to cover all the vertices; in our variant, not all paths but only those short ones, i.e., containing up to k vertices, can be used as candidates. The problem is NP-hard when k3; in the literature, there exist quite a number of approximation algorithms, especially for small k's. We present an improved k3-approximation algorithm for k{6,7,8}, an improved 5531-approximation algorithm for k=5, and an improved 85-approximation algorithm for k=4. The novelty inside these improved algorithms is observing a close connection between an optimal path cover and a certain polynomial-time computed edge set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信