Mingyang Gong , Guangting Chen , Zhi-Zhong Chen , Guohui Lin , Riki Uchida
{"title":"路径覆盖只使用短路径","authors":"Mingyang Gong , Guangting Chen , Zhi-Zhong Chen , Guohui Lin , Riki Uchida","doi":"10.1016/j.tcs.2025.115455","DOIUrl":null,"url":null,"abstract":"<div><div>We study a variant of the well-known <em>Path Cover</em> problem where the candidate paths in a solution have orders up to a fixed integer <em>k</em>. In Path Cover, one finds a minimum number of vertex-disjoint paths in an input graph to cover all the vertices; in our variant, not all paths but only those short ones, i.e., containing up to <em>k</em> vertices, can be used as candidates. The problem is NP-hard when <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>; in the literature, there exist quite a number of approximation algorithms, especially for small <em>k</em>'s. We present an improved <span><math><mfrac><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>-approximation algorithm for <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mn>6</mn><mo>,</mo><mn>7</mn><mo>,</mo><mn>8</mn><mo>}</mo></math></span>, an improved <span><math><mfrac><mrow><mn>55</mn></mrow><mrow><mn>31</mn></mrow></mfrac></math></span>-approximation algorithm for <span><math><mi>k</mi><mo>=</mo><mn>5</mn></math></span>, and an improved <span><math><mfrac><mrow><mn>8</mn></mrow><mrow><mn>5</mn></mrow></mfrac></math></span>-approximation algorithm for <span><math><mi>k</mi><mo>=</mo><mn>4</mn></math></span>. The novelty inside these improved algorithms is observing a close connection between an optimal path cover and a certain polynomial-time computed edge set.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1054 ","pages":"Article 115455"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path cover using only short paths\",\"authors\":\"Mingyang Gong , Guangting Chen , Zhi-Zhong Chen , Guohui Lin , Riki Uchida\",\"doi\":\"10.1016/j.tcs.2025.115455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study a variant of the well-known <em>Path Cover</em> problem where the candidate paths in a solution have orders up to a fixed integer <em>k</em>. In Path Cover, one finds a minimum number of vertex-disjoint paths in an input graph to cover all the vertices; in our variant, not all paths but only those short ones, i.e., containing up to <em>k</em> vertices, can be used as candidates. The problem is NP-hard when <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>; in the literature, there exist quite a number of approximation algorithms, especially for small <em>k</em>'s. We present an improved <span><math><mfrac><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>-approximation algorithm for <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mn>6</mn><mo>,</mo><mn>7</mn><mo>,</mo><mn>8</mn><mo>}</mo></math></span>, an improved <span><math><mfrac><mrow><mn>55</mn></mrow><mrow><mn>31</mn></mrow></mfrac></math></span>-approximation algorithm for <span><math><mi>k</mi><mo>=</mo><mn>5</mn></math></span>, and an improved <span><math><mfrac><mrow><mn>8</mn></mrow><mrow><mn>5</mn></mrow></mfrac></math></span>-approximation algorithm for <span><math><mi>k</mi><mo>=</mo><mn>4</mn></math></span>. The novelty inside these improved algorithms is observing a close connection between an optimal path cover and a certain polynomial-time computed edge set.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1054 \",\"pages\":\"Article 115455\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397525003937\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525003937","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
We study a variant of the well-known Path Cover problem where the candidate paths in a solution have orders up to a fixed integer k. In Path Cover, one finds a minimum number of vertex-disjoint paths in an input graph to cover all the vertices; in our variant, not all paths but only those short ones, i.e., containing up to k vertices, can be used as candidates. The problem is NP-hard when ; in the literature, there exist quite a number of approximation algorithms, especially for small k's. We present an improved -approximation algorithm for , an improved -approximation algorithm for , and an improved -approximation algorithm for . The novelty inside these improved algorithms is observing a close connection between an optimal path cover and a certain polynomial-time computed edge set.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.