开发可解释的机器学习模型,用于使用临床和行为特征预测阿尔茨海默病

IF 1.9 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-07-07 DOI:10.1016/j.mex.2025.103491
Rajkumar Govindarajan , K. Thirunadanasikamani , Komal Kumar Napa , S. Sathya , J. Senthil Murugan , K. G. Chandi Priya
{"title":"开发可解释的机器学习模型,用于使用临床和行为特征预测阿尔茨海默病","authors":"Rajkumar Govindarajan ,&nbsp;K. Thirunadanasikamani ,&nbsp;Komal Kumar Napa ,&nbsp;S. Sathya ,&nbsp;J. Senthil Murugan ,&nbsp;K. G. Chandi Priya","doi":"10.1016/j.mex.2025.103491","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents a reproducible machine learning methodology for the early prediction of Alzheimer’s disease (AD) using clinical and behavioural data. A comparative analysis of multiple classification algorithms was conducted, with the Gradient Boosting classifier yielding the best performance (accuracy: 93.9 %, F1-score: 91.8 %). To improve interpretability, SHapley Additive exPlanations (SHAP) were integrated into the workflow to quantify feature contributions at both global and individual levels. Key predictive variables such as Mini-Mental State Examination (MMSE), Activities of Daily Living (ADL), cholesterol levels, and functional assessment scores were identified and visualized using SHAP-based insights. A user-friendly, interactive web application was developed using Streamlit, allowing real-time patient data input and transparent model output visualization. This method offers a practical tool for clinicians and researchers to support early diagnosis and personalized risk assessment of AD, thus aiding in timely and informed clinical decision-making.</div><div>Accurate Prediction: Gradient Boosting model achieved 93.9 % accuracy for early Alzheimer’s detection.</div><div>Explainability: SHAP values provided interpretable insights into key clinical features.</div><div>Clinical Tool: A Streamlit-based web app enabled real-time, explainable predictions for users.</div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"15 ","pages":"Article 103491"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an explainable machine learning model for Alzheimer’s disease prediction using clinical and behavioural features\",\"authors\":\"Rajkumar Govindarajan ,&nbsp;K. Thirunadanasikamani ,&nbsp;Komal Kumar Napa ,&nbsp;S. Sathya ,&nbsp;J. Senthil Murugan ,&nbsp;K. G. Chandi Priya\",\"doi\":\"10.1016/j.mex.2025.103491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article presents a reproducible machine learning methodology for the early prediction of Alzheimer’s disease (AD) using clinical and behavioural data. A comparative analysis of multiple classification algorithms was conducted, with the Gradient Boosting classifier yielding the best performance (accuracy: 93.9 %, F1-score: 91.8 %). To improve interpretability, SHapley Additive exPlanations (SHAP) were integrated into the workflow to quantify feature contributions at both global and individual levels. Key predictive variables such as Mini-Mental State Examination (MMSE), Activities of Daily Living (ADL), cholesterol levels, and functional assessment scores were identified and visualized using SHAP-based insights. A user-friendly, interactive web application was developed using Streamlit, allowing real-time patient data input and transparent model output visualization. This method offers a practical tool for clinicians and researchers to support early diagnosis and personalized risk assessment of AD, thus aiding in timely and informed clinical decision-making.</div><div>Accurate Prediction: Gradient Boosting model achieved 93.9 % accuracy for early Alzheimer’s detection.</div><div>Explainability: SHAP values provided interpretable insights into key clinical features.</div><div>Clinical Tool: A Streamlit-based web app enabled real-time, explainable predictions for users.</div></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"15 \",\"pages\":\"Article 103491\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221501612500336X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221501612500336X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种可重复的机器学习方法,用于使用临床和行为数据进行阿尔茨海默病(AD)的早期预测。对多种分类算法进行了对比分析,其中Gradient Boosting分类器的准确率为93.9%,F1-score为91.8%,表现最佳。为了提高可解释性,SHapley加性解释(SHAP)被集成到工作流程中,以量化全局和个人层面的特征贡献。关键的预测变量,如迷你精神状态检查(MMSE)、日常生活活动(ADL)、胆固醇水平和功能评估分数,使用基于shap的见解进行识别和可视化。使用Streamlit开发了一个用户友好的交互式web应用程序,允许实时患者数据输入和透明的模型输出可视化。该方法为临床医生和研究人员提供了一种实用的工具,支持AD的早期诊断和个性化风险评估,从而有助于及时和知情的临床决策。准确预测:梯度增强模型对早期阿尔茨海默病的检测准确率达到93.9%。可解释性:SHAP值提供了对关键临床特征的可解释性见解。临床工具:一个基于流媒体的网络应用程序,为用户提供实时、可解释的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development of an explainable machine learning model for Alzheimer’s disease prediction using clinical and behavioural features

Development of an explainable machine learning model for Alzheimer’s disease prediction using clinical and behavioural features
This article presents a reproducible machine learning methodology for the early prediction of Alzheimer’s disease (AD) using clinical and behavioural data. A comparative analysis of multiple classification algorithms was conducted, with the Gradient Boosting classifier yielding the best performance (accuracy: 93.9 %, F1-score: 91.8 %). To improve interpretability, SHapley Additive exPlanations (SHAP) were integrated into the workflow to quantify feature contributions at both global and individual levels. Key predictive variables such as Mini-Mental State Examination (MMSE), Activities of Daily Living (ADL), cholesterol levels, and functional assessment scores were identified and visualized using SHAP-based insights. A user-friendly, interactive web application was developed using Streamlit, allowing real-time patient data input and transparent model output visualization. This method offers a practical tool for clinicians and researchers to support early diagnosis and personalized risk assessment of AD, thus aiding in timely and informed clinical decision-making.
Accurate Prediction: Gradient Boosting model achieved 93.9 % accuracy for early Alzheimer’s detection.
Explainability: SHAP values provided interpretable insights into key clinical features.
Clinical Tool: A Streamlit-based web app enabled real-time, explainable predictions for users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信