一类新的基于Hessian恢复的双谐方程数值求解方法及其在相场建模中的应用

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED
Minqiang Xu , Lei Zhang , Boying Wu , Kai Liu
{"title":"一类新的基于Hessian恢复的双谐方程数值求解方法及其在相场建模中的应用","authors":"Minqiang Xu ,&nbsp;Lei Zhang ,&nbsp;Boying Wu ,&nbsp;Kai Liu","doi":"10.1016/j.finel.2025.104405","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce unified Hessian recovery-based <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> finite element methods (HRB–FEM) and finite volume methods (HRB–FVM) for 2D biharmonic equations. Within the framework of Petrov–Galerkin methods, we propose a novel <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></math></span> formulation. Initially, we employ the Hessian recovery operator to discretize the Laplacian operator, subsequently integrating it into both the standard <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> Lagrange finite element framework and finite volume framework. Through tailored treatments of Neumann-type boundary conditions aimed at reducing computational overhead, we extend our Hessian recovery-based FEM to address phase field equations. Numerical experiments confirm optimal order of convergence under <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norms, demonstrating rates of <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> respectively for both proposed methods. Furthermore, a series of benchmark tests highlight the robustness of our approach and its ability to faithfully capture the physical characteristics during prolonged simulations of phase field equations.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"251 ","pages":"Article 104405"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel class of Hessian recovery-based numerical methods for solving biharmonic equations and their applications in phase field modeling\",\"authors\":\"Minqiang Xu ,&nbsp;Lei Zhang ,&nbsp;Boying Wu ,&nbsp;Kai Liu\",\"doi\":\"10.1016/j.finel.2025.104405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce unified Hessian recovery-based <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> finite element methods (HRB–FEM) and finite volume methods (HRB–FVM) for 2D biharmonic equations. Within the framework of Petrov–Galerkin methods, we propose a novel <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></math></span> formulation. Initially, we employ the Hessian recovery operator to discretize the Laplacian operator, subsequently integrating it into both the standard <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> Lagrange finite element framework and finite volume framework. Through tailored treatments of Neumann-type boundary conditions aimed at reducing computational overhead, we extend our Hessian recovery-based FEM to address phase field equations. Numerical experiments confirm optimal order of convergence under <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norms, demonstrating rates of <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> respectively for both proposed methods. Furthermore, a series of benchmark tests highlight the robustness of our approach and its ability to faithfully capture the physical characteristics during prolonged simulations of phase field equations.</div></div>\",\"PeriodicalId\":56133,\"journal\":{\"name\":\"Finite Elements in Analysis and Design\",\"volume\":\"251 \",\"pages\":\"Article 104405\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Elements in Analysis and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168874X25000940\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X25000940","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了基于统一Hessian恢复的二维双谐方程的C0有限元法(HRB-FEM)和有限体积法(HRB-FVM)。在Petrov-Galerkin方法的框架内,我们提出了一个新的H3−H1公式。首先,我们使用Hessian恢复算子将拉普拉斯算子离散化,然后将其整合到标准的C0拉格朗日有限元框架和有限体积框架中。通过针对诺伊曼型边界条件的定制处理,旨在减少计算开销,我们扩展了基于Hessian恢复的FEM来解决相场方程。数值实验证实了在L2和H1范数下的最优收敛顺序,证明了两种方法的速率分别为O(hk+1)和O(hk)。此外,一系列基准测试突出了我们的方法的鲁棒性,以及它在长时间模拟相场方程期间忠实地捕捉物理特性的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel class of Hessian recovery-based numerical methods for solving biharmonic equations and their applications in phase field modeling
In this paper, we introduce unified Hessian recovery-based C0 finite element methods (HRB–FEM) and finite volume methods (HRB–FVM) for 2D biharmonic equations. Within the framework of Petrov–Galerkin methods, we propose a novel H3H1 formulation. Initially, we employ the Hessian recovery operator to discretize the Laplacian operator, subsequently integrating it into both the standard C0 Lagrange finite element framework and finite volume framework. Through tailored treatments of Neumann-type boundary conditions aimed at reducing computational overhead, we extend our Hessian recovery-based FEM to address phase field equations. Numerical experiments confirm optimal order of convergence under L2 and H1 norms, demonstrating rates of O(hk+1) and O(hk) respectively for both proposed methods. Furthermore, a series of benchmark tests highlight the robustness of our approach and its ability to faithfully capture the physical characteristics during prolonged simulations of phase field equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信