{"title":"电网同步数据入侵检测、分类和缓解的网络弹性机制","authors":"Soma Bhattacharya, Brundavanam Seshasai, Ebha Koley, Subhojit Ghosh","doi":"10.1016/j.ijcip.2025.100785","DOIUrl":null,"url":null,"abstract":"<div><div>In recent times, owing to their ability in providing accurate synchronized phasor information with global positioning system (GPS) based common time reference, phasor measurement units (PMUs) have emerged as one of the most significant components of the wide-area monitoring system of modern power networks. However, the use of public GPS signal and increased dependence on the communication infrastructure for transmitting phasor information have made the PMU (also referred to as synchrophasor) dependent operations highly vulnerable to the cyber intrusions. Intrusions on synchrophasor data is generally executed by either manipulating the common time reference (referred to as time synchronization attack (TSA)) or by injecting a falsified data into the actual PMU acquired signal to recreate a non-existing scenario (referred to as replay attack (RA)). For both the attacks, the acquisition of manipulated data at the control centre negatively disturbs the wide-area monitoring and control operations, which might even lead the network to blackout. Motivated by the requirement of increasing the resiliency of power networks against TSA and RA, the development of an accurate, reliable and comprehensive scheme for detecting, classifying and mitigating the impact of phasor intrusions has been sought in the present work. The three-stage mechanism involves processing of the phasor data acquired from multiple PMUs using bi-directional gated recurrent unit (Bi-GRU) based classifiers to detect intrusion (first stage) and further classify the type of intrusion as TSA or RA (second stage). Post-intrusion classification, in the final stage, Bessel interpolation is applied to filter out the spoofed data and further replace it with intrusion-free (pre-attack) data. The proposed scheme has been extensively validated for practical settings in real-time testbed with regards to detecting intrusions, distinguishing intrusions from contingencies, classifying intrusion and estimating the state variables closer to the pre-attack levels.</div></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"50 ","pages":"Article 100785"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cyber-resilient mechanism for detection, classification and mitigation of intrusion on synchrophasor data in power networks\",\"authors\":\"Soma Bhattacharya, Brundavanam Seshasai, Ebha Koley, Subhojit Ghosh\",\"doi\":\"10.1016/j.ijcip.2025.100785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent times, owing to their ability in providing accurate synchronized phasor information with global positioning system (GPS) based common time reference, phasor measurement units (PMUs) have emerged as one of the most significant components of the wide-area monitoring system of modern power networks. However, the use of public GPS signal and increased dependence on the communication infrastructure for transmitting phasor information have made the PMU (also referred to as synchrophasor) dependent operations highly vulnerable to the cyber intrusions. Intrusions on synchrophasor data is generally executed by either manipulating the common time reference (referred to as time synchronization attack (TSA)) or by injecting a falsified data into the actual PMU acquired signal to recreate a non-existing scenario (referred to as replay attack (RA)). For both the attacks, the acquisition of manipulated data at the control centre negatively disturbs the wide-area monitoring and control operations, which might even lead the network to blackout. Motivated by the requirement of increasing the resiliency of power networks against TSA and RA, the development of an accurate, reliable and comprehensive scheme for detecting, classifying and mitigating the impact of phasor intrusions has been sought in the present work. The three-stage mechanism involves processing of the phasor data acquired from multiple PMUs using bi-directional gated recurrent unit (Bi-GRU) based classifiers to detect intrusion (first stage) and further classify the type of intrusion as TSA or RA (second stage). Post-intrusion classification, in the final stage, Bessel interpolation is applied to filter out the spoofed data and further replace it with intrusion-free (pre-attack) data. The proposed scheme has been extensively validated for practical settings in real-time testbed with regards to detecting intrusions, distinguishing intrusions from contingencies, classifying intrusion and estimating the state variables closer to the pre-attack levels.</div></div>\",\"PeriodicalId\":49057,\"journal\":{\"name\":\"International Journal of Critical Infrastructure Protection\",\"volume\":\"50 \",\"pages\":\"Article 100785\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Critical Infrastructure Protection\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874548225000460\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874548225000460","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A cyber-resilient mechanism for detection, classification and mitigation of intrusion on synchrophasor data in power networks
In recent times, owing to their ability in providing accurate synchronized phasor information with global positioning system (GPS) based common time reference, phasor measurement units (PMUs) have emerged as one of the most significant components of the wide-area monitoring system of modern power networks. However, the use of public GPS signal and increased dependence on the communication infrastructure for transmitting phasor information have made the PMU (also referred to as synchrophasor) dependent operations highly vulnerable to the cyber intrusions. Intrusions on synchrophasor data is generally executed by either manipulating the common time reference (referred to as time synchronization attack (TSA)) or by injecting a falsified data into the actual PMU acquired signal to recreate a non-existing scenario (referred to as replay attack (RA)). For both the attacks, the acquisition of manipulated data at the control centre negatively disturbs the wide-area monitoring and control operations, which might even lead the network to blackout. Motivated by the requirement of increasing the resiliency of power networks against TSA and RA, the development of an accurate, reliable and comprehensive scheme for detecting, classifying and mitigating the impact of phasor intrusions has been sought in the present work. The three-stage mechanism involves processing of the phasor data acquired from multiple PMUs using bi-directional gated recurrent unit (Bi-GRU) based classifiers to detect intrusion (first stage) and further classify the type of intrusion as TSA or RA (second stage). Post-intrusion classification, in the final stage, Bessel interpolation is applied to filter out the spoofed data and further replace it with intrusion-free (pre-attack) data. The proposed scheme has been extensively validated for practical settings in real-time testbed with regards to detecting intrusions, distinguishing intrusions from contingencies, classifying intrusion and estimating the state variables closer to the pre-attack levels.
期刊介绍:
The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing.
The scope of the journal includes, but is not limited to:
1. Analysis of security challenges that are unique or common to the various infrastructure sectors.
2. Identification of core security principles and techniques that can be applied to critical infrastructure protection.
3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures.
4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.