Yichong Liu , Zhiliang Shi , Chaoyang Xiao , Bo Wang
{"title":"基于集成学习和知识蒸馏的神经胶质瘤分级深度学习临床决策支持系统","authors":"Yichong Liu , Zhiliang Shi , Chaoyang Xiao , Bo Wang","doi":"10.1016/j.compmedimag.2025.102602","DOIUrl":null,"url":null,"abstract":"<div><div>Gliomas are the most common malignant primary brain tumors, and grading their severity, particularly the diagnosis of low-grade gliomas, remains a challenging task for clinicians and radiologists. With advancements in deep learning and medical image processing technologies, the development of Clinical Decision Support Systems (CDSS) for glioma grading offers significant benefits for clinical treatment. This study proposes a CDSS for glioma grading, integrating a novel feature extraction framework. The method is based on combining ensemble learning and knowledge distillation: teacher models were constructed through ensemble learning, while uncertainty-weighted ensemble averaging is applied during student model training to refine knowledge transfer. This approach bridges the teacher-student performance gap, enhancing grading accuracy, reliability, and clinical applicability with lightweight deployment. Experimental results show 85.96 % Accuracy (5.2 % improvement over baseline), with Precision (83.90 %), Recall (87.40 %), and F1-score (83.90 %) increasing by 7.5 %, 5.1 %, and 5.1 % respectively. The teacher-student performance gap is reduced to 3.2 %, confirming effectiveness. Furthermore, the developed CDSS not only ensures rapid and accurate glioma grading but also includes critical features influencing the grading results, seamlessly integrating a methodology for generating comprehensive diagnostic reports. Consequently, the glioma grading CDSS represents a practical clinical decision support tool capable of delivering accurate and efficient auxiliary diagnostic decisions for physicians and patients.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"124 ","pages":"Article 102602"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning-based clinical decision support system for glioma grading using ensemble learning and knowledge distillation\",\"authors\":\"Yichong Liu , Zhiliang Shi , Chaoyang Xiao , Bo Wang\",\"doi\":\"10.1016/j.compmedimag.2025.102602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gliomas are the most common malignant primary brain tumors, and grading their severity, particularly the diagnosis of low-grade gliomas, remains a challenging task for clinicians and radiologists. With advancements in deep learning and medical image processing technologies, the development of Clinical Decision Support Systems (CDSS) for glioma grading offers significant benefits for clinical treatment. This study proposes a CDSS for glioma grading, integrating a novel feature extraction framework. The method is based on combining ensemble learning and knowledge distillation: teacher models were constructed through ensemble learning, while uncertainty-weighted ensemble averaging is applied during student model training to refine knowledge transfer. This approach bridges the teacher-student performance gap, enhancing grading accuracy, reliability, and clinical applicability with lightweight deployment. Experimental results show 85.96 % Accuracy (5.2 % improvement over baseline), with Precision (83.90 %), Recall (87.40 %), and F1-score (83.90 %) increasing by 7.5 %, 5.1 %, and 5.1 % respectively. The teacher-student performance gap is reduced to 3.2 %, confirming effectiveness. Furthermore, the developed CDSS not only ensures rapid and accurate glioma grading but also includes critical features influencing the grading results, seamlessly integrating a methodology for generating comprehensive diagnostic reports. Consequently, the glioma grading CDSS represents a practical clinical decision support tool capable of delivering accurate and efficient auxiliary diagnostic decisions for physicians and patients.</div></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"124 \",\"pages\":\"Article 102602\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611125001119\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125001119","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A deep learning-based clinical decision support system for glioma grading using ensemble learning and knowledge distillation
Gliomas are the most common malignant primary brain tumors, and grading their severity, particularly the diagnosis of low-grade gliomas, remains a challenging task for clinicians and radiologists. With advancements in deep learning and medical image processing technologies, the development of Clinical Decision Support Systems (CDSS) for glioma grading offers significant benefits for clinical treatment. This study proposes a CDSS for glioma grading, integrating a novel feature extraction framework. The method is based on combining ensemble learning and knowledge distillation: teacher models were constructed through ensemble learning, while uncertainty-weighted ensemble averaging is applied during student model training to refine knowledge transfer. This approach bridges the teacher-student performance gap, enhancing grading accuracy, reliability, and clinical applicability with lightweight deployment. Experimental results show 85.96 % Accuracy (5.2 % improvement over baseline), with Precision (83.90 %), Recall (87.40 %), and F1-score (83.90 %) increasing by 7.5 %, 5.1 %, and 5.1 % respectively. The teacher-student performance gap is reduced to 3.2 %, confirming effectiveness. Furthermore, the developed CDSS not only ensures rapid and accurate glioma grading but also includes critical features influencing the grading results, seamlessly integrating a methodology for generating comprehensive diagnostic reports. Consequently, the glioma grading CDSS represents a practical clinical decision support tool capable of delivering accurate and efficient auxiliary diagnostic decisions for physicians and patients.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.