Cristina Contreras, Mercedes Muñoz, Óscar Freire-Agulleiro, Ánxela Estévez, María Pilar Martínez, Lucia Olmos, Alfonso Gómez del Val, Claudia Rodríguez, Ramona A. Silvestre, Ana Sánchez, Sara Benedito, Luis Rivera, Javier Sáenz-Medina, Miguel López, María Elvira López-Oliva, Dolores Prieto
{"title":"肥胖引起的动脉氧化还原失衡,包括线粒体NOX4、内皮功能障碍和内质网应激,是肾损伤的基础,可通过线粒体生物能量学增强来补偿","authors":"Cristina Contreras, Mercedes Muñoz, Óscar Freire-Agulleiro, Ánxela Estévez, María Pilar Martínez, Lucia Olmos, Alfonso Gómez del Val, Claudia Rodríguez, Ramona A. Silvestre, Ana Sánchez, Sara Benedito, Luis Rivera, Javier Sáenz-Medina, Miguel López, María Elvira López-Oliva, Dolores Prieto","doi":"10.1016/j.redox.2025.103760","DOIUrl":null,"url":null,"abstract":"Mitochondrial reactive oxygen species (mtROS) are key pathogenic factors in the microvascular complications of metabolic disorders including nephropathy. However, the effects of obesity on kidney vascular mitochondria and endothelial function remain unclear. We assessed here the specific impact of obesity on endothelial function, mtROS-derived oxidative stress and mitochondrial bioenergetics of kidney preglomerular arteries in rat models of high fat diet (HFD)-induced obesity and endoplasmic reticulum (ER) stress. Arterial function was assessed in microvascular myographs, mitoSOX and Amplex Red fluorimetry were used to measure mtROS levels, and mitochondrial respiration was evaluated in renal preglomerular arteries by using an Agilent Seahorse XF Pro analyzer. Expression of mitochondria regulators and endoplasmic reticulum (ER) stress markers was analyzed by Western blot. We demonstrate here that HFD induces kidney injury and structural alterations including glomerulomegalia and fibrosis associated to redox imbalance with augmented mitochondrial superoxide, endothelial dysfunction, and endoplasmic reticulum (ER) stress in renal preglomerular arteries. Both HFD and ER stress lead to impaired biogenesis and down-regulation of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and NADPH oxidase 4 (NOX4), and lower levels of H<ce:inf loc=\"post\">2</ce:inf>O<ce:inf loc=\"post\">2</ce:inf> that contribute to endothelial dysfunction. These changes are in turn associated with enhanced arterial mitochondrial respiration along with up-regulation of mitochondrial cytochrome c oxidase subunit 4 COX-IV likely related to hemodynamic changes in kidney preglomerular arteries leading to increased glomerular hyperfiltration rate (GFR) to supply function of injured glomeruli. The present findings therefore link adaptative changes in mitochondrial bioenergetics to obesity-induced impaired redox balance, endothelial dysfunction and ER stress in preglomerular arteries underlying kidney injury.","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"658 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Obesity-induced arterial redox imbalance involving mitochondrial NOX4, endothelial dysfunction, and ER stress underlie kidney injury compensated by enhanced mitochondrial bioenergetics\",\"authors\":\"Cristina Contreras, Mercedes Muñoz, Óscar Freire-Agulleiro, Ánxela Estévez, María Pilar Martínez, Lucia Olmos, Alfonso Gómez del Val, Claudia Rodríguez, Ramona A. Silvestre, Ana Sánchez, Sara Benedito, Luis Rivera, Javier Sáenz-Medina, Miguel López, María Elvira López-Oliva, Dolores Prieto\",\"doi\":\"10.1016/j.redox.2025.103760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mitochondrial reactive oxygen species (mtROS) are key pathogenic factors in the microvascular complications of metabolic disorders including nephropathy. However, the effects of obesity on kidney vascular mitochondria and endothelial function remain unclear. We assessed here the specific impact of obesity on endothelial function, mtROS-derived oxidative stress and mitochondrial bioenergetics of kidney preglomerular arteries in rat models of high fat diet (HFD)-induced obesity and endoplasmic reticulum (ER) stress. Arterial function was assessed in microvascular myographs, mitoSOX and Amplex Red fluorimetry were used to measure mtROS levels, and mitochondrial respiration was evaluated in renal preglomerular arteries by using an Agilent Seahorse XF Pro analyzer. Expression of mitochondria regulators and endoplasmic reticulum (ER) stress markers was analyzed by Western blot. We demonstrate here that HFD induces kidney injury and structural alterations including glomerulomegalia and fibrosis associated to redox imbalance with augmented mitochondrial superoxide, endothelial dysfunction, and endoplasmic reticulum (ER) stress in renal preglomerular arteries. Both HFD and ER stress lead to impaired biogenesis and down-regulation of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and NADPH oxidase 4 (NOX4), and lower levels of H<ce:inf loc=\\\"post\\\">2</ce:inf>O<ce:inf loc=\\\"post\\\">2</ce:inf> that contribute to endothelial dysfunction. These changes are in turn associated with enhanced arterial mitochondrial respiration along with up-regulation of mitochondrial cytochrome c oxidase subunit 4 COX-IV likely related to hemodynamic changes in kidney preglomerular arteries leading to increased glomerular hyperfiltration rate (GFR) to supply function of injured glomeruli. The present findings therefore link adaptative changes in mitochondrial bioenergetics to obesity-induced impaired redox balance, endothelial dysfunction and ER stress in preglomerular arteries underlying kidney injury.\",\"PeriodicalId\":20998,\"journal\":{\"name\":\"Redox Biology\",\"volume\":\"658 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.redox.2025.103760\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.redox.2025.103760","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Obesity-induced arterial redox imbalance involving mitochondrial NOX4, endothelial dysfunction, and ER stress underlie kidney injury compensated by enhanced mitochondrial bioenergetics
Mitochondrial reactive oxygen species (mtROS) are key pathogenic factors in the microvascular complications of metabolic disorders including nephropathy. However, the effects of obesity on kidney vascular mitochondria and endothelial function remain unclear. We assessed here the specific impact of obesity on endothelial function, mtROS-derived oxidative stress and mitochondrial bioenergetics of kidney preglomerular arteries in rat models of high fat diet (HFD)-induced obesity and endoplasmic reticulum (ER) stress. Arterial function was assessed in microvascular myographs, mitoSOX and Amplex Red fluorimetry were used to measure mtROS levels, and mitochondrial respiration was evaluated in renal preglomerular arteries by using an Agilent Seahorse XF Pro analyzer. Expression of mitochondria regulators and endoplasmic reticulum (ER) stress markers was analyzed by Western blot. We demonstrate here that HFD induces kidney injury and structural alterations including glomerulomegalia and fibrosis associated to redox imbalance with augmented mitochondrial superoxide, endothelial dysfunction, and endoplasmic reticulum (ER) stress in renal preglomerular arteries. Both HFD and ER stress lead to impaired biogenesis and down-regulation of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and NADPH oxidase 4 (NOX4), and lower levels of H2O2 that contribute to endothelial dysfunction. These changes are in turn associated with enhanced arterial mitochondrial respiration along with up-regulation of mitochondrial cytochrome c oxidase subunit 4 COX-IV likely related to hemodynamic changes in kidney preglomerular arteries leading to increased glomerular hyperfiltration rate (GFR) to supply function of injured glomeruli. The present findings therefore link adaptative changes in mitochondrial bioenergetics to obesity-induced impaired redox balance, endothelial dysfunction and ER stress in preglomerular arteries underlying kidney injury.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.