{"title":"COVID-19的病毒性线粒体病","authors":"Tsung-Hsien Chen, Tien-Hsin Jeng, Ming-Yang Lee, Hsiang-Chen Wang, Kun-Feng Tsai, Chu-Kuang Chou","doi":"10.1016/j.redox.2025.103766","DOIUrl":null,"url":null,"abstract":"Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), disrupts cellular mitochondria, leading to widespread chronic inflammation and multi-organ dysfunction. Viral proteins cause mitochondrial bioenergetic collapse, disrupt mitochondrial dynamics, and impair ionic homeostasis, while avoiding antiviral defenses, including mitochondrial antiviral signaling. These changes drive both acute COVID-19 and its longer-term effects, known as “long COVID”. This review examines new findings on the mechanisms by which SARS-CoV-2 affects mitochondria and for the impact on chronic immunity, long-term health risks, and potential treatments.","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"13 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viral Mitochondriopathy in COVID-19\",\"authors\":\"Tsung-Hsien Chen, Tien-Hsin Jeng, Ming-Yang Lee, Hsiang-Chen Wang, Kun-Feng Tsai, Chu-Kuang Chou\",\"doi\":\"10.1016/j.redox.2025.103766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), disrupts cellular mitochondria, leading to widespread chronic inflammation and multi-organ dysfunction. Viral proteins cause mitochondrial bioenergetic collapse, disrupt mitochondrial dynamics, and impair ionic homeostasis, while avoiding antiviral defenses, including mitochondrial antiviral signaling. These changes drive both acute COVID-19 and its longer-term effects, known as “long COVID”. This review examines new findings on the mechanisms by which SARS-CoV-2 affects mitochondria and for the impact on chronic immunity, long-term health risks, and potential treatments.\",\"PeriodicalId\":20998,\"journal\":{\"name\":\"Redox Biology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.redox.2025.103766\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.redox.2025.103766","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), disrupts cellular mitochondria, leading to widespread chronic inflammation and multi-organ dysfunction. Viral proteins cause mitochondrial bioenergetic collapse, disrupt mitochondrial dynamics, and impair ionic homeostasis, while avoiding antiviral defenses, including mitochondrial antiviral signaling. These changes drive both acute COVID-19 and its longer-term effects, known as “long COVID”. This review examines new findings on the mechanisms by which SARS-CoV-2 affects mitochondria and for the impact on chronic immunity, long-term health risks, and potential treatments.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.