Rui Chen , Chunjin Wang , Tao Luo , Wenjun Xu , Qixian Zhang , Jie Zhou , Rui Gao , Chi Fai Cheung , Wei Zhou
{"title":"模型驱动的三维激光聚焦转移在透明柔性聚合物微结构精密制造中的应用","authors":"Rui Chen , Chunjin Wang , Tao Luo , Wenjun Xu , Qixian Zhang , Jie Zhou , Rui Gao , Chi Fai Cheung , Wei Zhou","doi":"10.1016/j.ijmachtools.2025.104310","DOIUrl":null,"url":null,"abstract":"<div><div>Micro-engineered transparent flexible polymers components play a crucial role in various microsystem fields, such as flexible electronics and microfluidics. However, conventional laser fabrication techniques face significant challenges in overcoming issues of energy deposition inaccuracies and focal mismatch, which hinder the fabrication of high-fidelity and controllable 3D microstructure in transparent polymer materials. In this study, we propose a universal 3D dynamic-focusing laser (3D-DFL) fabrication strategy using an infrared (IR) picosecond laser. By dynamically adjusting the Z-axis focus in real time, the system effectively compensates for the depth shifts caused by ablation, ensuring consistent energy deposition and stable fabrication quality. High-speed imaging reveals a three-stage ablation mechanism (stabilization, expansion, and contraction) under laser irradiation. To support the multi-layer dynamic shifting process of the 3D-DFL approach, a universal ablation depth prediction model was established to compensate depth deviations during laser-material interactions. The validity of the model has been proven by its ability to predict ablation depth in different polymer materials with low mean absolute percentage errors (MAPE), achieving 5.99 % for polydimethylsiloxane (PDMS) and 2.68 % for polyethylene terephthalate (PET). The model enables the accurate fabrication of 3D microstructures, achieving normalized peak-to-valley deviations within 8.0 % and normalized root-mean-square deviations below 3.0 %, with an arithmetic surface roughness of approximately 2 μm. The 3D dynamic-focusing laser (3D-DFL) approach enables rapid tailoring of complex geometries, including protruding and recessed microstructures on PDMS and PET substrates. Experimental validation highlights its capability to fabricate functional components such as flexible pressure sensors, microfluidic chips, and ultrasonic droplet manipulation platforms. This study provides an efficient and reliable pathway for the scalable fabricating of high-precision transparent polymers micro-engineered devices and promotes the advancement of research and industry in advanced flexible microsystems.</div></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"210 ","pages":"Article 104310"},"PeriodicalIF":18.8000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-driven 3D laser focus shifting for precision fabrication of microstructures in transparent flexible polymers\",\"authors\":\"Rui Chen , Chunjin Wang , Tao Luo , Wenjun Xu , Qixian Zhang , Jie Zhou , Rui Gao , Chi Fai Cheung , Wei Zhou\",\"doi\":\"10.1016/j.ijmachtools.2025.104310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Micro-engineered transparent flexible polymers components play a crucial role in various microsystem fields, such as flexible electronics and microfluidics. However, conventional laser fabrication techniques face significant challenges in overcoming issues of energy deposition inaccuracies and focal mismatch, which hinder the fabrication of high-fidelity and controllable 3D microstructure in transparent polymer materials. In this study, we propose a universal 3D dynamic-focusing laser (3D-DFL) fabrication strategy using an infrared (IR) picosecond laser. By dynamically adjusting the Z-axis focus in real time, the system effectively compensates for the depth shifts caused by ablation, ensuring consistent energy deposition and stable fabrication quality. High-speed imaging reveals a three-stage ablation mechanism (stabilization, expansion, and contraction) under laser irradiation. To support the multi-layer dynamic shifting process of the 3D-DFL approach, a universal ablation depth prediction model was established to compensate depth deviations during laser-material interactions. The validity of the model has been proven by its ability to predict ablation depth in different polymer materials with low mean absolute percentage errors (MAPE), achieving 5.99 % for polydimethylsiloxane (PDMS) and 2.68 % for polyethylene terephthalate (PET). The model enables the accurate fabrication of 3D microstructures, achieving normalized peak-to-valley deviations within 8.0 % and normalized root-mean-square deviations below 3.0 %, with an arithmetic surface roughness of approximately 2 μm. The 3D dynamic-focusing laser (3D-DFL) approach enables rapid tailoring of complex geometries, including protruding and recessed microstructures on PDMS and PET substrates. Experimental validation highlights its capability to fabricate functional components such as flexible pressure sensors, microfluidic chips, and ultrasonic droplet manipulation platforms. This study provides an efficient and reliable pathway for the scalable fabricating of high-precision transparent polymers micro-engineered devices and promotes the advancement of research and industry in advanced flexible microsystems.</div></div>\",\"PeriodicalId\":14011,\"journal\":{\"name\":\"International Journal of Machine Tools & Manufacture\",\"volume\":\"210 \",\"pages\":\"Article 104310\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Tools & Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890695525000653\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695525000653","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Model-driven 3D laser focus shifting for precision fabrication of microstructures in transparent flexible polymers
Micro-engineered transparent flexible polymers components play a crucial role in various microsystem fields, such as flexible electronics and microfluidics. However, conventional laser fabrication techniques face significant challenges in overcoming issues of energy deposition inaccuracies and focal mismatch, which hinder the fabrication of high-fidelity and controllable 3D microstructure in transparent polymer materials. In this study, we propose a universal 3D dynamic-focusing laser (3D-DFL) fabrication strategy using an infrared (IR) picosecond laser. By dynamically adjusting the Z-axis focus in real time, the system effectively compensates for the depth shifts caused by ablation, ensuring consistent energy deposition and stable fabrication quality. High-speed imaging reveals a three-stage ablation mechanism (stabilization, expansion, and contraction) under laser irradiation. To support the multi-layer dynamic shifting process of the 3D-DFL approach, a universal ablation depth prediction model was established to compensate depth deviations during laser-material interactions. The validity of the model has been proven by its ability to predict ablation depth in different polymer materials with low mean absolute percentage errors (MAPE), achieving 5.99 % for polydimethylsiloxane (PDMS) and 2.68 % for polyethylene terephthalate (PET). The model enables the accurate fabrication of 3D microstructures, achieving normalized peak-to-valley deviations within 8.0 % and normalized root-mean-square deviations below 3.0 %, with an arithmetic surface roughness of approximately 2 μm. The 3D dynamic-focusing laser (3D-DFL) approach enables rapid tailoring of complex geometries, including protruding and recessed microstructures on PDMS and PET substrates. Experimental validation highlights its capability to fabricate functional components such as flexible pressure sensors, microfluidic chips, and ultrasonic droplet manipulation platforms. This study provides an efficient and reliable pathway for the scalable fabricating of high-precision transparent polymers micro-engineered devices and promotes the advancement of research and industry in advanced flexible microsystems.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).