Zhusi Zhong, Yuli Wang, Jing Wu, Wen-Chi Hsu, Vin Somasundaram, Lulu Bi, Shreyas Kulkarni, Zhuoqi Ma, Scott Collins, Grayson Baird, Sun Ho Ahn, Xue Feng, Ihab Kamel, Cheng Ting Lin, Colin Greineder, Michael Atalay, Zhicheng Jiao, Harrison Bai
{"title":"用于CT肺血管造影报告生成和结果预测的视觉语言模型","authors":"Zhusi Zhong, Yuli Wang, Jing Wu, Wen-Chi Hsu, Vin Somasundaram, Lulu Bi, Shreyas Kulkarni, Zhuoqi Ma, Scott Collins, Grayson Baird, Sun Ho Ahn, Xue Feng, Ihab Kamel, Cheng Ting Lin, Colin Greineder, Michael Atalay, Zhicheng Jiao, Harrison Bai","doi":"10.1038/s41746-025-01807-8","DOIUrl":null,"url":null,"abstract":"<p>Accurate and comprehensive interpretation of pulmonary embolism (PE) from Computed Tomography Pulmonary Angiography (CTPA) scans remains a clinical challenge due to the limited specificity and structure of existing AI tools. We propose an agent-based framework that integrates Vision-Language Models (VLMs) for detecting 32 PE-related abnormalities and Large Language Models (LLMs) for structured report generation. Trained on over 69,000 CTPA studies from 24,890 patients across Brown University Health (BUH), Johns Hopkins University (JHU), and the INSPECT dataset from Stanford, the model demonstrates strong performance in abnormality classification and report generation. For abnormality classification, it achieved AUROC scores of 0.788 (BUH), 0.754 (INSPECT), and 0.710 (JHU), with corresponding BERT-F1 scores of 0.891, 0.829, and 0.842. The abnormality-guided reporting strategy consistently outperformed the organ-based and holistic captioning baselines. For survival prediction, a multimodal fusion model that incorporates imaging, clinical variables, diagnostic outputs, and generated reports achieved concordance indices of 0.863 (BUH) and 0.731 (JHU), outperforming traditional PESI scores. This framework provides a clinically meaningful and interpretable solution for end-to-end PE diagnosis, structured reporting, and outcome prediction.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"14 1","pages":""},"PeriodicalIF":15.1000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vision-language model for report generation and outcome prediction in CT pulmonary angiogram\",\"authors\":\"Zhusi Zhong, Yuli Wang, Jing Wu, Wen-Chi Hsu, Vin Somasundaram, Lulu Bi, Shreyas Kulkarni, Zhuoqi Ma, Scott Collins, Grayson Baird, Sun Ho Ahn, Xue Feng, Ihab Kamel, Cheng Ting Lin, Colin Greineder, Michael Atalay, Zhicheng Jiao, Harrison Bai\",\"doi\":\"10.1038/s41746-025-01807-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate and comprehensive interpretation of pulmonary embolism (PE) from Computed Tomography Pulmonary Angiography (CTPA) scans remains a clinical challenge due to the limited specificity and structure of existing AI tools. We propose an agent-based framework that integrates Vision-Language Models (VLMs) for detecting 32 PE-related abnormalities and Large Language Models (LLMs) for structured report generation. Trained on over 69,000 CTPA studies from 24,890 patients across Brown University Health (BUH), Johns Hopkins University (JHU), and the INSPECT dataset from Stanford, the model demonstrates strong performance in abnormality classification and report generation. For abnormality classification, it achieved AUROC scores of 0.788 (BUH), 0.754 (INSPECT), and 0.710 (JHU), with corresponding BERT-F1 scores of 0.891, 0.829, and 0.842. The abnormality-guided reporting strategy consistently outperformed the organ-based and holistic captioning baselines. For survival prediction, a multimodal fusion model that incorporates imaging, clinical variables, diagnostic outputs, and generated reports achieved concordance indices of 0.863 (BUH) and 0.731 (JHU), outperforming traditional PESI scores. This framework provides a clinically meaningful and interpretable solution for end-to-end PE diagnosis, structured reporting, and outcome prediction.</p>\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":15.1000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41746-025-01807-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01807-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Vision-language model for report generation and outcome prediction in CT pulmonary angiogram
Accurate and comprehensive interpretation of pulmonary embolism (PE) from Computed Tomography Pulmonary Angiography (CTPA) scans remains a clinical challenge due to the limited specificity and structure of existing AI tools. We propose an agent-based framework that integrates Vision-Language Models (VLMs) for detecting 32 PE-related abnormalities and Large Language Models (LLMs) for structured report generation. Trained on over 69,000 CTPA studies from 24,890 patients across Brown University Health (BUH), Johns Hopkins University (JHU), and the INSPECT dataset from Stanford, the model demonstrates strong performance in abnormality classification and report generation. For abnormality classification, it achieved AUROC scores of 0.788 (BUH), 0.754 (INSPECT), and 0.710 (JHU), with corresponding BERT-F1 scores of 0.891, 0.829, and 0.842. The abnormality-guided reporting strategy consistently outperformed the organ-based and holistic captioning baselines. For survival prediction, a multimodal fusion model that incorporates imaging, clinical variables, diagnostic outputs, and generated reports achieved concordance indices of 0.863 (BUH) and 0.731 (JHU), outperforming traditional PESI scores. This framework provides a clinically meaningful and interpretable solution for end-to-end PE diagnosis, structured reporting, and outcome prediction.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.