反犯罪-使用反事实的解释来探索减少犯罪的场景。

Marcos M Raimundo, Germain Garcia-Zanabria, Luis Gustavo Nonato, Jorge Poco
{"title":"反犯罪-使用反事实的解释来探索减少犯罪的场景。","authors":"Marcos M Raimundo, Germain Garcia-Zanabria, Luis Gustavo Nonato, Jorge Poco","doi":"10.1109/TVCG.2025.3586202","DOIUrl":null,"url":null,"abstract":"<p><p>Analyzing the impact of socioeconomic and urban variables on crime is a complex data analysis problem. Exploring synthetic, correlation-based scenarios using changes in a set of variables could alter a region's definition from unsafe to safe (known counterfactual explanation), which can aid decision-makers in interpreting crime in that region and define public policies to mitigate criminal activity. We propose CounterCrime, a visual analytics tool for crime analysis that uses counterfactual explanations to add insights for this problem. This tool employs various interactive visual metaphors to explore the counterfactual explorations generated in each region. To facilitate exploration, we organize our analysis at three levels: the whole city, the region group, and the regional level. This work proposes a new perspective in crime analysis by creating \"what-if\" scenarios and allowing decision makers to anticipate changes that would make a region safer. The tool guides the user in selecting variables with the most significant effect in all city regions. Using a greedy strategy, the system recommends the best variables that may influence crime in unsafe regions as the user explores. Our tool allows for identifying the most appropriate counterfactual explorations at the regional level by grouping them by similarity and determining their feasibility by comparing them with existing examples in other regions. Using crime data from São Paulo, Brazil, we validated our results with case studies. These case studies reveal interesting findings; for example, scenarios that influence crime in a particular unsafe region (or set of regions) might not influence crime in other unsafe regions.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CounterCrime - Using counterfactual explanations to explore crime reduction scenarios.\",\"authors\":\"Marcos M Raimundo, Germain Garcia-Zanabria, Luis Gustavo Nonato, Jorge Poco\",\"doi\":\"10.1109/TVCG.2025.3586202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Analyzing the impact of socioeconomic and urban variables on crime is a complex data analysis problem. Exploring synthetic, correlation-based scenarios using changes in a set of variables could alter a region's definition from unsafe to safe (known counterfactual explanation), which can aid decision-makers in interpreting crime in that region and define public policies to mitigate criminal activity. We propose CounterCrime, a visual analytics tool for crime analysis that uses counterfactual explanations to add insights for this problem. This tool employs various interactive visual metaphors to explore the counterfactual explorations generated in each region. To facilitate exploration, we organize our analysis at three levels: the whole city, the region group, and the regional level. This work proposes a new perspective in crime analysis by creating \\\"what-if\\\" scenarios and allowing decision makers to anticipate changes that would make a region safer. The tool guides the user in selecting variables with the most significant effect in all city regions. Using a greedy strategy, the system recommends the best variables that may influence crime in unsafe regions as the user explores. Our tool allows for identifying the most appropriate counterfactual explorations at the regional level by grouping them by similarity and determining their feasibility by comparing them with existing examples in other regions. Using crime data from São Paulo, Brazil, we validated our results with case studies. These case studies reveal interesting findings; for example, scenarios that influence crime in a particular unsafe region (or set of regions) might not influence crime in other unsafe regions.</p>\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2025.3586202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3586202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分析社会经济和城市变量对犯罪的影响是一个复杂的数据分析问题。利用一组变量的变化来探索综合的、基于相关性的情景,可以将一个地区的定义从不安全改变为安全(已知的反事实解释),这可以帮助决策者解释该地区的犯罪行为,并制定公共政策来减轻犯罪活动。我们提出反犯罪,一个可视化的犯罪分析工具,使用反事实的解释来增加对这个问题的见解。该工具采用各种交互式视觉隐喻来探索每个地区产生的反事实探索。为了便于探索,我们将分析组织在三个层面:整个城市、区域集团和区域层面。这项工作通过创造“假设”场景,并允许决策者预测变化,使一个地区更安全,为犯罪分析提供了一个新的视角。该工具指导用户选择在所有城市区域中影响最显著的变量。使用贪婪策略,当用户探索时,系统会推荐可能影响不安全地区犯罪的最佳变量。我们的工具允许识别最合适的反事实的探索在区域层面上,通过分组他们的相似性和确定他们的可行性,通过比较他们在其他地区的现有的例子。使用来自巴西圣保罗的犯罪数据,我们通过案例研究验证了我们的结果。这些案例研究揭示了有趣的发现;例如,影响特定不安全区域(或一组区域)犯罪的场景可能不会影响其他不安全区域的犯罪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CounterCrime - Using counterfactual explanations to explore crime reduction scenarios.

Analyzing the impact of socioeconomic and urban variables on crime is a complex data analysis problem. Exploring synthetic, correlation-based scenarios using changes in a set of variables could alter a region's definition from unsafe to safe (known counterfactual explanation), which can aid decision-makers in interpreting crime in that region and define public policies to mitigate criminal activity. We propose CounterCrime, a visual analytics tool for crime analysis that uses counterfactual explanations to add insights for this problem. This tool employs various interactive visual metaphors to explore the counterfactual explorations generated in each region. To facilitate exploration, we organize our analysis at three levels: the whole city, the region group, and the regional level. This work proposes a new perspective in crime analysis by creating "what-if" scenarios and allowing decision makers to anticipate changes that would make a region safer. The tool guides the user in selecting variables with the most significant effect in all city regions. Using a greedy strategy, the system recommends the best variables that may influence crime in unsafe regions as the user explores. Our tool allows for identifying the most appropriate counterfactual explorations at the regional level by grouping them by similarity and determining their feasibility by comparing them with existing examples in other regions. Using crime data from São Paulo, Brazil, we validated our results with case studies. These case studies reveal interesting findings; for example, scenarios that influence crime in a particular unsafe region (or set of regions) might not influence crime in other unsafe regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信