Jonathan Kim, Edilberto Amorim, Vikram R Rao, Hannah C Glass, Danilo Bernardo
{"title":"基于脑电图深度学习的短期新生儿癫痫发作预测。","authors":"Jonathan Kim, Edilberto Amorim, Vikram R Rao, Hannah C Glass, Danilo Bernardo","doi":"10.1371/journal.pdig.0000890","DOIUrl":null,"url":null,"abstract":"<p><p>Strategies to predict neonatal seizure risk have typically focused on long-term static predictions with prediction horizons spanning days during the acute postnatal period. Higher temporal resolution or short-horizon neonatal seizure prediction, on the time-frame of minutes, remains unexplored. Here, we investigated quantitative electroencephalography (QEEG) based deep learning (DL) for short-horizon seizure prediction. We used two publicly available EEG seizure datasets with a total of 132 neonates containing a total of 281 hours of EEG data. We benchmarked current state-of-the-art time-series DL methods for seizure prediction, identifying convolutional LSTM (ConvLSTM) as having the strongest performance at preictal state classification. We assessed ConvLSTM performance in a seizure alarm system over varying short-range (1-7 minutes) seizure prediction horizons (SPH) and seizure occurrence periods (SOP) and identified optimal performance at SPH 3 min and SOP 7 min, with AUROC 0.8. At 80% sensitivity, false detection rate was 0.68 events/hour with time-in-warning of 0.36. Model calibration was moderate, with an expected calibration error of 0.106. These findings establish the feasibility of short-horizon neonatal seizure prediction and warrant the need for further validation.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 7","pages":"e0000890"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12250315/pdf/","citationCount":"0","resultStr":"{\"title\":\"Short-horizon neonatal seizure prediction using EEG-based deep learning.\",\"authors\":\"Jonathan Kim, Edilberto Amorim, Vikram R Rao, Hannah C Glass, Danilo Bernardo\",\"doi\":\"10.1371/journal.pdig.0000890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Strategies to predict neonatal seizure risk have typically focused on long-term static predictions with prediction horizons spanning days during the acute postnatal period. Higher temporal resolution or short-horizon neonatal seizure prediction, on the time-frame of minutes, remains unexplored. Here, we investigated quantitative electroencephalography (QEEG) based deep learning (DL) for short-horizon seizure prediction. We used two publicly available EEG seizure datasets with a total of 132 neonates containing a total of 281 hours of EEG data. We benchmarked current state-of-the-art time-series DL methods for seizure prediction, identifying convolutional LSTM (ConvLSTM) as having the strongest performance at preictal state classification. We assessed ConvLSTM performance in a seizure alarm system over varying short-range (1-7 minutes) seizure prediction horizons (SPH) and seizure occurrence periods (SOP) and identified optimal performance at SPH 3 min and SOP 7 min, with AUROC 0.8. At 80% sensitivity, false detection rate was 0.68 events/hour with time-in-warning of 0.36. Model calibration was moderate, with an expected calibration error of 0.106. These findings establish the feasibility of short-horizon neonatal seizure prediction and warrant the need for further validation.</p>\",\"PeriodicalId\":74465,\"journal\":{\"name\":\"PLOS digital health\",\"volume\":\"4 7\",\"pages\":\"e0000890\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12250315/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLOS digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pdig.0000890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Short-horizon neonatal seizure prediction using EEG-based deep learning.
Strategies to predict neonatal seizure risk have typically focused on long-term static predictions with prediction horizons spanning days during the acute postnatal period. Higher temporal resolution or short-horizon neonatal seizure prediction, on the time-frame of minutes, remains unexplored. Here, we investigated quantitative electroencephalography (QEEG) based deep learning (DL) for short-horizon seizure prediction. We used two publicly available EEG seizure datasets with a total of 132 neonates containing a total of 281 hours of EEG data. We benchmarked current state-of-the-art time-series DL methods for seizure prediction, identifying convolutional LSTM (ConvLSTM) as having the strongest performance at preictal state classification. We assessed ConvLSTM performance in a seizure alarm system over varying short-range (1-7 minutes) seizure prediction horizons (SPH) and seizure occurrence periods (SOP) and identified optimal performance at SPH 3 min and SOP 7 min, with AUROC 0.8. At 80% sensitivity, false detection rate was 0.68 events/hour with time-in-warning of 0.36. Model calibration was moderate, with an expected calibration error of 0.106. These findings establish the feasibility of short-horizon neonatal seizure prediction and warrant the need for further validation.