突破电压限制:用于4.7 v级准固态锂金属电池的磷酸三乙酯工程pvdf基电解质与双界面稳定。

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lin Yang, Youqi Chu, Yitian Feng, Yongbiao Mu, Lingfeng Zou, Chao Li, Chaozhu Huang, Huicun Gu, Chi Li, Qing Zhang, Lin Zeng
{"title":"突破电压限制:用于4.7 v级准固态锂金属电池的磷酸三乙酯工程pvdf基电解质与双界面稳定。","authors":"Lin Yang, Youqi Chu, Yitian Feng, Yongbiao Mu, Lingfeng Zou, Chao Li, Chaozhu Huang, Huicun Gu, Chi Li, Qing Zhang, Lin Zeng","doi":"10.1021/jacs.5c08493","DOIUrl":null,"url":null,"abstract":"<p><p>The advancement of high-voltage solid-state electrolytes constitutes a pivotal challenge for realizing practical solid-state lithium metal batteries (SSLMBs). This work overcomes intrinsic voltage constraints in conventional dimethylformamide-processed poly(vinylidene fluoride) quasi-solid-state polymer electrolytes (SPEs) through molecular engineering of triethyl phosphate (TEP) as a high-band-gap solvent. First-principles calculations demonstrate TEP's exceptional frontier orbital configuration, featuring a 9.4 eV HOMO-LUMO gap, thus expanding the electrochemical window to 4.8 V, an enhancement of 0.5 V compared to DMF-based systems (4.3 V). Leveraging this design, the optimized SPEs enable the stable operation of Li||NCM811 cells at ultrahigh voltages up to 4.7 V. Remarkably, these cells exhibit excellent long-term cycling stability, capacity retentions of 88.2% (1800 cycles at 4.2 V) and 86.8% (900 cycles at 4.5 V) are achieved. Even under the ultrahigh voltage of 4.7 V, the batteries maintain remarkable cycling stability, successfully completing 500 cycles and showcasing exceptional performance. Multiscale analysis reveals dual interfacial stabilization mechanisms: a TEP-derived Li<sub>3</sub>PO<sub>4</sub>-rich cathode interphase suppressing structural degradation coupled with a 25 nm crystalline Li<sub>2</sub>O-dominated anode interphase inhibiting dendrites. This molecular design paradigm establishes a pathway toward 4.7 V-class SSLMBs through interfacial architecture stabilization.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breaking Voltage Limitations: Triethyl Phosphate-Engineered PVDF-Based Electrolytes with Dual-Interphase Stabilization for 4.7 V-Class Quasi-solid-state Lithium Metal Batteries.\",\"authors\":\"Lin Yang, Youqi Chu, Yitian Feng, Yongbiao Mu, Lingfeng Zou, Chao Li, Chaozhu Huang, Huicun Gu, Chi Li, Qing Zhang, Lin Zeng\",\"doi\":\"10.1021/jacs.5c08493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The advancement of high-voltage solid-state electrolytes constitutes a pivotal challenge for realizing practical solid-state lithium metal batteries (SSLMBs). This work overcomes intrinsic voltage constraints in conventional dimethylformamide-processed poly(vinylidene fluoride) quasi-solid-state polymer electrolytes (SPEs) through molecular engineering of triethyl phosphate (TEP) as a high-band-gap solvent. First-principles calculations demonstrate TEP's exceptional frontier orbital configuration, featuring a 9.4 eV HOMO-LUMO gap, thus expanding the electrochemical window to 4.8 V, an enhancement of 0.5 V compared to DMF-based systems (4.3 V). Leveraging this design, the optimized SPEs enable the stable operation of Li||NCM811 cells at ultrahigh voltages up to 4.7 V. Remarkably, these cells exhibit excellent long-term cycling stability, capacity retentions of 88.2% (1800 cycles at 4.2 V) and 86.8% (900 cycles at 4.5 V) are achieved. Even under the ultrahigh voltage of 4.7 V, the batteries maintain remarkable cycling stability, successfully completing 500 cycles and showcasing exceptional performance. Multiscale analysis reveals dual interfacial stabilization mechanisms: a TEP-derived Li<sub>3</sub>PO<sub>4</sub>-rich cathode interphase suppressing structural degradation coupled with a 25 nm crystalline Li<sub>2</sub>O-dominated anode interphase inhibiting dendrites. This molecular design paradigm establishes a pathway toward 4.7 V-class SSLMBs through interfacial architecture stabilization.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c08493\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c08493","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高压固态电解质的发展是实现实用化固态锂金属电池的关键挑战。本研究通过磷酸三乙酯(TEP)作为高带隙溶剂的分子工程,克服了传统二甲基甲酰胺加工的聚偏氟乙烯准固态聚合物电解质(spe)的固有电压限制。第一线原理计算证明了TEP特殊的前沿轨道配置,具有9.4 eV的HOMO-LUMO间隙,从而将电化学窗口扩展到4.8 V,与基于dmf的系统(4.3 V)相比增强了0.5 V。利用这种设计,优化的spe使Li||NCM811电池在高达4.7 V的超高电压下稳定工作。值得注意的是,这些电池表现出出色的长期循环稳定性,容量保留率为88.2% (4.2 V时1800次)和86.8% (4.5 V时900次)。即使在4.7 V的超高电压下,电池也保持了出色的循环稳定性,成功完成了500次循环,表现出卓越的性能。多尺度分析揭示了双重界面稳定机制:由tep衍生的富含li3po4的阴极界面抑制结构降解,外加25 nm以li20为主的阳极界面抑制枝晶。这种分子设计范例通过界面结构稳定建立了通向4.7 v级sslmb的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breaking Voltage Limitations: Triethyl Phosphate-Engineered PVDF-Based Electrolytes with Dual-Interphase Stabilization for 4.7 V-Class Quasi-solid-state Lithium Metal Batteries.

The advancement of high-voltage solid-state electrolytes constitutes a pivotal challenge for realizing practical solid-state lithium metal batteries (SSLMBs). This work overcomes intrinsic voltage constraints in conventional dimethylformamide-processed poly(vinylidene fluoride) quasi-solid-state polymer electrolytes (SPEs) through molecular engineering of triethyl phosphate (TEP) as a high-band-gap solvent. First-principles calculations demonstrate TEP's exceptional frontier orbital configuration, featuring a 9.4 eV HOMO-LUMO gap, thus expanding the electrochemical window to 4.8 V, an enhancement of 0.5 V compared to DMF-based systems (4.3 V). Leveraging this design, the optimized SPEs enable the stable operation of Li||NCM811 cells at ultrahigh voltages up to 4.7 V. Remarkably, these cells exhibit excellent long-term cycling stability, capacity retentions of 88.2% (1800 cycles at 4.2 V) and 86.8% (900 cycles at 4.5 V) are achieved. Even under the ultrahigh voltage of 4.7 V, the batteries maintain remarkable cycling stability, successfully completing 500 cycles and showcasing exceptional performance. Multiscale analysis reveals dual interfacial stabilization mechanisms: a TEP-derived Li3PO4-rich cathode interphase suppressing structural degradation coupled with a 25 nm crystalline Li2O-dominated anode interphase inhibiting dendrites. This molecular design paradigm establishes a pathway toward 4.7 V-class SSLMBs through interfacial architecture stabilization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信