Ludger Overmeyer (2) , Marvin Raupert , Matthias Pusch , Tjorben Griemsmann , André Katterfeld , Christoph Lotz
{"title":"微月重力条件下激光粉末定向能沉积和无基体单层粉末床熔合","authors":"Ludger Overmeyer (2) , Marvin Raupert , Matthias Pusch , Tjorben Griemsmann , André Katterfeld , Christoph Lotz","doi":"10.1016/j.cirp.2025.03.031","DOIUrl":null,"url":null,"abstract":"<div><div>In-Space Manufacturing (ISM) needs material-efficient processes or the usage of locally available resources. This article presents two successfully applied approaches: Laser Powder Directed Energy Deposition (LP-DED) realized in microgravity on Earth for the first time using Ti-6Al-4V and substrate-free single layer powder bed fusion (PBF) under lunar gravity using LX-I50 regolith simulant. The Einstein-Elevator, a third-generation drop tower, is used to simulate the environmental conditions of space regarding gravity. The research results confirm the feasibility and open up new perspectives for space research, particularly concerning resource-efficient manufacturing technologies in future missions.</div></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"74 1","pages":"Pages 297-301"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser powder directed energy deposition and substrate-free single layer powder bed fusion under micro- and lunar gravity conditions\",\"authors\":\"Ludger Overmeyer (2) , Marvin Raupert , Matthias Pusch , Tjorben Griemsmann , André Katterfeld , Christoph Lotz\",\"doi\":\"10.1016/j.cirp.2025.03.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In-Space Manufacturing (ISM) needs material-efficient processes or the usage of locally available resources. This article presents two successfully applied approaches: Laser Powder Directed Energy Deposition (LP-DED) realized in microgravity on Earth for the first time using Ti-6Al-4V and substrate-free single layer powder bed fusion (PBF) under lunar gravity using LX-I50 regolith simulant. The Einstein-Elevator, a third-generation drop tower, is used to simulate the environmental conditions of space regarding gravity. The research results confirm the feasibility and open up new perspectives for space research, particularly concerning resource-efficient manufacturing technologies in future missions.</div></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"74 1\",\"pages\":\"Pages 297-301\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000785062500037X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000785062500037X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Laser powder directed energy deposition and substrate-free single layer powder bed fusion under micro- and lunar gravity conditions
In-Space Manufacturing (ISM) needs material-efficient processes or the usage of locally available resources. This article presents two successfully applied approaches: Laser Powder Directed Energy Deposition (LP-DED) realized in microgravity on Earth for the first time using Ti-6Al-4V and substrate-free single layer powder bed fusion (PBF) under lunar gravity using LX-I50 regolith simulant. The Einstein-Elevator, a third-generation drop tower, is used to simulate the environmental conditions of space regarding gravity. The research results confirm the feasibility and open up new perspectives for space research, particularly concerning resource-efficient manufacturing technologies in future missions.
期刊介绍:
CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems.
This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include:
Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.