混合模型预测AlMgSi1合金的变形行为

IF 3.2 3区 工程技术 Q2 ENGINEERING, INDUSTRIAL
Kristian Martinsen (3) , Thawin Hart-Rawung , Jon Holmestad , Johan Andreas Stendal , Sverre Gulbrandsen-Dahl , Ole Runar Myhr
{"title":"混合模型预测AlMgSi1合金的变形行为","authors":"Kristian Martinsen (3) ,&nbsp;Thawin Hart-Rawung ,&nbsp;Jon Holmestad ,&nbsp;Johan Andreas Stendal ,&nbsp;Sverre Gulbrandsen-Dahl ,&nbsp;Ole Runar Myhr","doi":"10.1016/j.cirp.2025.03.005","DOIUrl":null,"url":null,"abstract":"<div><div>This paper shows how hybrid modeling combining a physics-based Precipitation Model and a data-driven Gaussian Process Regression model can be used to predict flow stress curves of different variants of AlMgSi1 alloys. The approach can be a step towards a methodology to manage higher variability in input material, such as remelted contaminated post-consumer aluminum scrap. Data from laboratory compression tests of six different compositional variations of AlMgSi1 with different contents of Si, Cu, and Mg was used. The proposed hybrid model aligns well with experimental results both within the training data range and inputs beyond the training range.</div></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"74 1","pages":"Pages 369-373"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid modelling predicting forming behavior with variations in AlMgSi1 alloys\",\"authors\":\"Kristian Martinsen (3) ,&nbsp;Thawin Hart-Rawung ,&nbsp;Jon Holmestad ,&nbsp;Johan Andreas Stendal ,&nbsp;Sverre Gulbrandsen-Dahl ,&nbsp;Ole Runar Myhr\",\"doi\":\"10.1016/j.cirp.2025.03.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper shows how hybrid modeling combining a physics-based Precipitation Model and a data-driven Gaussian Process Regression model can be used to predict flow stress curves of different variants of AlMgSi1 alloys. The approach can be a step towards a methodology to manage higher variability in input material, such as remelted contaminated post-consumer aluminum scrap. Data from laboratory compression tests of six different compositional variations of AlMgSi1 with different contents of Si, Cu, and Mg was used. The proposed hybrid model aligns well with experimental results both within the training data range and inputs beyond the training range.</div></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"74 1\",\"pages\":\"Pages 369-373\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007850625000071\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850625000071","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

本文展示了基于物理的沉淀模型和数据驱动的高斯过程回归模型相结合的混合模型如何用于预测AlMgSi1合金不同变体的流变应力曲线。这种方法可以成为一种方法,用于管理输入材料的较高可变性,例如消费后重新熔化的受污染的铝废料。数据来自实验室压缩试验的六种不同的组成变化的AlMgSi1与不同含量的Si, Cu和Mg。所提出的混合模型无论在训练数据范围内还是在训练数据范围外,都与实验结果吻合良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid modelling predicting forming behavior with variations in AlMgSi1 alloys
This paper shows how hybrid modeling combining a physics-based Precipitation Model and a data-driven Gaussian Process Regression model can be used to predict flow stress curves of different variants of AlMgSi1 alloys. The approach can be a step towards a methodology to manage higher variability in input material, such as remelted contaminated post-consumer aluminum scrap. Data from laboratory compression tests of six different compositional variations of AlMgSi1 with different contents of Si, Cu, and Mg was used. The proposed hybrid model aligns well with experimental results both within the training data range and inputs beyond the training range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cirp Annals-Manufacturing Technology
Cirp Annals-Manufacturing Technology 工程技术-工程:工业
CiteScore
7.50
自引率
9.80%
发文量
137
审稿时长
13.5 months
期刊介绍: CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems. This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include: Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信