电弧增材制造invar 36合金的超声振动辅助加工

IF 3.2 3区 工程技术 Q2 ENGINEERING, INDUSTRIAL
Ramazan Hakkı Namlu , Korcan Küçüköztaş , Hakan Kalkan , Bilgin Kaftanoğlu (1)
{"title":"电弧增材制造invar 36合金的超声振动辅助加工","authors":"Ramazan Hakkı Namlu ,&nbsp;Korcan Küçüköztaş ,&nbsp;Hakan Kalkan ,&nbsp;Bilgin Kaftanoğlu (1)","doi":"10.1016/j.cirp.2025.04.070","DOIUrl":null,"url":null,"abstract":"<div><div>Invar 36, known for its low coefficient of thermal expansion, is widely used in applications like composite moulds, electronics, and optics. Although Wire Arc Additive Manufacturing (WAAM) offers high deposition rates and cost-effectiveness for Invar 36, it creates rough surface textures requiring machining as post-processing. In order to overcome Invar 36′s machinability challenges, Ultrasonic Vibration-Assisted Machining (UVAM) was applied for the first time on WAAM-fabricated Invar 36. The results showed that UVAM outperformed conventional machining in terms of cutting force, surface roughness and topography, subsurface microhardness and tool wear with improvements observed in both building and deposition directions.</div></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"74 1","pages":"Pages 87-91"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasonic vibration-assisted machining of invar 36 alloy manufactured by wire arc additive manufacturing\",\"authors\":\"Ramazan Hakkı Namlu ,&nbsp;Korcan Küçüköztaş ,&nbsp;Hakan Kalkan ,&nbsp;Bilgin Kaftanoğlu (1)\",\"doi\":\"10.1016/j.cirp.2025.04.070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Invar 36, known for its low coefficient of thermal expansion, is widely used in applications like composite moulds, electronics, and optics. Although Wire Arc Additive Manufacturing (WAAM) offers high deposition rates and cost-effectiveness for Invar 36, it creates rough surface textures requiring machining as post-processing. In order to overcome Invar 36′s machinability challenges, Ultrasonic Vibration-Assisted Machining (UVAM) was applied for the first time on WAAM-fabricated Invar 36. The results showed that UVAM outperformed conventional machining in terms of cutting force, surface roughness and topography, subsurface microhardness and tool wear with improvements observed in both building and deposition directions.</div></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"74 1\",\"pages\":\"Pages 87-91\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007850625001179\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850625001179","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

因瓦尔36以其低热膨胀系数而闻名,广泛应用于复合模具、电子和光学等领域。虽然电弧增材制造(WAAM)为Invar 36提供了高沉积速率和成本效益,但它会产生粗糙的表面纹理,需要作为后处理进行加工。为了克服Invar 36的可加工性挑战,超声波振动辅助加工(UVAM)首次应用于waam制造的Invar 36。结果表明,UVAM在切削力、表面粗糙度和形貌、亚表面显微硬度和刀具磨损方面都优于常规加工,在构建和沉积方向上都有改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrasonic vibration-assisted machining of invar 36 alloy manufactured by wire arc additive manufacturing
Invar 36, known for its low coefficient of thermal expansion, is widely used in applications like composite moulds, electronics, and optics. Although Wire Arc Additive Manufacturing (WAAM) offers high deposition rates and cost-effectiveness for Invar 36, it creates rough surface textures requiring machining as post-processing. In order to overcome Invar 36′s machinability challenges, Ultrasonic Vibration-Assisted Machining (UVAM) was applied for the first time on WAAM-fabricated Invar 36. The results showed that UVAM outperformed conventional machining in terms of cutting force, surface roughness and topography, subsurface microhardness and tool wear with improvements observed in both building and deposition directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cirp Annals-Manufacturing Technology
Cirp Annals-Manufacturing Technology 工程技术-工程:工业
CiteScore
7.50
自引率
9.80%
发文量
137
审稿时长
13.5 months
期刊介绍: CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems. This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include: Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信