Haoxuan Deng, Samir Khan, John Ahmet Erkoyuncu (2)
{"title":"随机小波核在工业系统可解释故障诊断中的应用","authors":"Haoxuan Deng, Samir Khan, John Ahmet Erkoyuncu (2)","doi":"10.1016/j.cirp.2025.04.083","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning is a powerful method for fault diagnosis, but its \"black-box\" nature raises concerns in critical applications. This paper presents an interpretable, lightweight method combining random convolution kernel transformation (ROCKET) with wavelet kernels, which offer systematic time-frequency analysis and intuitive insights. Principal component analysis (PCA) is used to extract relevant patterns, forming a health indicator that guides maintenance decisions. A case study on linear actuator fault diagnosis demonstrates the method's balance of interpretability and computational efficiency, making it a valuable tool for reliable asset health monitoring in resource-limited settings.</div></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"74 1","pages":"Pages 49-53"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random wavelet kernels for interpretable fault diagnosis in industrial systems\",\"authors\":\"Haoxuan Deng, Samir Khan, John Ahmet Erkoyuncu (2)\",\"doi\":\"10.1016/j.cirp.2025.04.083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep learning is a powerful method for fault diagnosis, but its \\\"black-box\\\" nature raises concerns in critical applications. This paper presents an interpretable, lightweight method combining random convolution kernel transformation (ROCKET) with wavelet kernels, which offer systematic time-frequency analysis and intuitive insights. Principal component analysis (PCA) is used to extract relevant patterns, forming a health indicator that guides maintenance decisions. A case study on linear actuator fault diagnosis demonstrates the method's balance of interpretability and computational efficiency, making it a valuable tool for reliable asset health monitoring in resource-limited settings.</div></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"74 1\",\"pages\":\"Pages 49-53\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007850625001295\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850625001295","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Random wavelet kernels for interpretable fault diagnosis in industrial systems
Deep learning is a powerful method for fault diagnosis, but its "black-box" nature raises concerns in critical applications. This paper presents an interpretable, lightweight method combining random convolution kernel transformation (ROCKET) with wavelet kernels, which offer systematic time-frequency analysis and intuitive insights. Principal component analysis (PCA) is used to extract relevant patterns, forming a health indicator that guides maintenance decisions. A case study on linear actuator fault diagnosis demonstrates the method's balance of interpretability and computational efficiency, making it a valuable tool for reliable asset health monitoring in resource-limited settings.
期刊介绍:
CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems.
This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include:
Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.