多模态、非侵入式、生成式人工智能装配辅助系统的概念化

IF 3.2 3区 工程技术 Q2 ENGINEERING, INDUSTRIAL
Alessandro Simeone, Yuchen Fan, Dario Antonelli, Paolo C. Priarone (2), Luca Settineri (1)
{"title":"多模态、非侵入式、生成式人工智能装配辅助系统的概念化","authors":"Alessandro Simeone,&nbsp;Yuchen Fan,&nbsp;Dario Antonelli,&nbsp;Paolo C. Priarone (2),&nbsp;Luca Settineri (1)","doi":"10.1016/j.cirp.2025.04.061","DOIUrl":null,"url":null,"abstract":"<div><div>The transition to Industry 5.0 highlights the necessity for human-centric and adaptive manufacturing systems. This study conceptualises a multimodal, generative AI-based assistive system for assembly designed to deliver real-time error detection and adaptive guidance tailored to diverse operator profiles. The system improves human-machine interaction by issuing preventive warnings to the operator prior to critical tasks, detecting assembly errors, providing multimodal corrective instructions during operations, and deploying robotic interventions when operator-driven corrections prove inadequate. Preliminary laboratory-scale implementation results show the system capability in mitigating assembly errors through dynamic assistive technology selection and iterative feedback learning.</div></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"74 1","pages":"Pages 37-41"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conceptualisation of a multimodal, non-intrusive, generative AI-based assistive system for assembly\",\"authors\":\"Alessandro Simeone,&nbsp;Yuchen Fan,&nbsp;Dario Antonelli,&nbsp;Paolo C. Priarone (2),&nbsp;Luca Settineri (1)\",\"doi\":\"10.1016/j.cirp.2025.04.061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The transition to Industry 5.0 highlights the necessity for human-centric and adaptive manufacturing systems. This study conceptualises a multimodal, generative AI-based assistive system for assembly designed to deliver real-time error detection and adaptive guidance tailored to diverse operator profiles. The system improves human-machine interaction by issuing preventive warnings to the operator prior to critical tasks, detecting assembly errors, providing multimodal corrective instructions during operations, and deploying robotic interventions when operator-driven corrections prove inadequate. Preliminary laboratory-scale implementation results show the system capability in mitigating assembly errors through dynamic assistive technology selection and iterative feedback learning.</div></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"74 1\",\"pages\":\"Pages 37-41\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007850625001088\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850625001088","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

向工业5.0的过渡强调了以人为中心和自适应制造系统的必要性。该研究构想了一个多模式、基于人工智能的辅助装配系统,旨在提供实时错误检测和自适应指导,以适应不同的操作人员。该系统通过在关键任务前向操作人员发出预防性警告、检测装配错误、在操作过程中提供多模式纠正指令,以及在操作人员驱动的纠正措施不足时部署机器人干预,改善了人机交互。初步的实验室规模实施结果表明,该系统能够通过动态辅助技术选择和迭代反馈学习来减轻装配误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conceptualisation of a multimodal, non-intrusive, generative AI-based assistive system for assembly
The transition to Industry 5.0 highlights the necessity for human-centric and adaptive manufacturing systems. This study conceptualises a multimodal, generative AI-based assistive system for assembly designed to deliver real-time error detection and adaptive guidance tailored to diverse operator profiles. The system improves human-machine interaction by issuing preventive warnings to the operator prior to critical tasks, detecting assembly errors, providing multimodal corrective instructions during operations, and deploying robotic interventions when operator-driven corrections prove inadequate. Preliminary laboratory-scale implementation results show the system capability in mitigating assembly errors through dynamic assistive technology selection and iterative feedback learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cirp Annals-Manufacturing Technology
Cirp Annals-Manufacturing Technology 工程技术-工程:工业
CiteScore
7.50
自引率
9.80%
发文量
137
审稿时长
13.5 months
期刊介绍: CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems. This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include: Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信