基于ai的CFRP机床热变形预测传感器布局

IF 3.2 3区 工程技术 Q2 ENGINEERING, INDUSTRIAL
Felix Finkeldey , Makoto Kato , Petra Wiederkehr (2) , Yasuhiro Kakinuma (2)
{"title":"基于ai的CFRP机床热变形预测传感器布局","authors":"Felix Finkeldey ,&nbsp;Makoto Kato ,&nbsp;Petra Wiederkehr (2) ,&nbsp;Yasuhiro Kakinuma (2)","doi":"10.1016/j.cirp.2025.04.048","DOIUrl":null,"url":null,"abstract":"<div><div>Using data-based approaches, accurate predictions of thermal deformations, which can significantly affect the quality of manufactured components, can be enabled. However, a sufficient amount of data with maximised information content is necessary for efficient training. In this paper, an approach for optimising sensor configurations for predicting thermal deformations is presented. From initially 300 temperature sensors, the number of required sensors was significantly reduced while maintaining predictive accuracy. Furthermore, a pattern for sensor placement was identified, providing the potential for an efficient sensor layout that enables cost-effective data acquisition and improved monitoring of machining and wear progression of machine tool components.</div></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"74 1","pages":"Pages 505-509"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-based sensor layout for predicting thermal deformations of CFRP machine tools\",\"authors\":\"Felix Finkeldey ,&nbsp;Makoto Kato ,&nbsp;Petra Wiederkehr (2) ,&nbsp;Yasuhiro Kakinuma (2)\",\"doi\":\"10.1016/j.cirp.2025.04.048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Using data-based approaches, accurate predictions of thermal deformations, which can significantly affect the quality of manufactured components, can be enabled. However, a sufficient amount of data with maximised information content is necessary for efficient training. In this paper, an approach for optimising sensor configurations for predicting thermal deformations is presented. From initially 300 temperature sensors, the number of required sensors was significantly reduced while maintaining predictive accuracy. Furthermore, a pattern for sensor placement was identified, providing the potential for an efficient sensor layout that enables cost-effective data acquisition and improved monitoring of machining and wear progression of machine tool components.</div></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"74 1\",\"pages\":\"Pages 505-509\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007850625001027\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850625001027","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

使用基于数据的方法,可以实现对热变形的准确预测,这可以显著影响制造部件的质量。然而,有效的训练需要足够数量的数据和最大程度的信息内容。本文提出了一种优化传感器结构以预测热变形的方法。从最初的300个温度传感器,所需的传感器数量显着减少,同时保持预测精度。此外,还确定了传感器的放置模式,为有效的传感器布局提供了潜力,从而实现了具有成本效益的数据采集,并改进了对机床部件加工和磨损过程的监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-based sensor layout for predicting thermal deformations of CFRP machine tools
Using data-based approaches, accurate predictions of thermal deformations, which can significantly affect the quality of manufactured components, can be enabled. However, a sufficient amount of data with maximised information content is necessary for efficient training. In this paper, an approach for optimising sensor configurations for predicting thermal deformations is presented. From initially 300 temperature sensors, the number of required sensors was significantly reduced while maintaining predictive accuracy. Furthermore, a pattern for sensor placement was identified, providing the potential for an efficient sensor layout that enables cost-effective data acquisition and improved monitoring of machining and wear progression of machine tool components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cirp Annals-Manufacturing Technology
Cirp Annals-Manufacturing Technology 工程技术-工程:工业
CiteScore
7.50
自引率
9.80%
发文量
137
审稿时长
13.5 months
期刊介绍: CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems. This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include: Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信