量子pcp:关于自适应、多重证明和局部哈密顿量的约简

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-07-11 DOI:10.22331/q-2025-07-11-1791
Harry Buhrman, Jonas Helsen, Jordi Weggemans
{"title":"量子pcp:关于自适应、多重证明和局部哈密顿量的约简","authors":"Harry Buhrman, Jonas Helsen, Jordi Weggemans","doi":"10.22331/q-2025-07-11-1791","DOIUrl":null,"url":null,"abstract":"We define a general formulation of quantum PCPs, which captures adaptivity and multiple unentangled provers, and give a detailed construction of the quantum reduction to a local Hamiltonian with a constant promise gap. The reduction turns out to be a versatile subroutine to prove properties of quantum PCPs, allowing us to show: (i) Non-adaptive quantum PCPs can simulate adaptive quantum PCPs when the number of proof queries is constant. In fact, this can even be shown to hold when the non-adaptive quantum PCP picks the proof indices simply uniformly at random from a subset of all possible index combinations, answering an open question by Aharonov, Arad, Landau and Vazirani (STOC '09). (ii) If the $q$-local Hamiltonian problem with constant promise gap can be solved in $\\mathsf{QCMA}$, then $\\mathsf{QPCP}[q] \\subseteq \\mathsf{QCMA}$ for any $q \\in O(1)$. (iii) If $\\mathsf{QMA}(k)$ has a quantum PCP for any $k \\leq \\text{poly}(n)$, then $\\mathsf{QMA}(2) = \\mathsf{QMA}$, connecting two of the longest-standing open problems in quantum complexity theory. Moreover, we also show that there exist (quantum) oracles relative to which certain quantum PCP statements are false. Hence, any attempt to prove the quantum PCP conjecture requires, just as was the case for the classical PCP theorem, (quantumly) non-relativizing techniques.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"1 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum PCPs: on Adaptivity, Multiple Provers and Reductions to Local Hamiltonians\",\"authors\":\"Harry Buhrman, Jonas Helsen, Jordi Weggemans\",\"doi\":\"10.22331/q-2025-07-11-1791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a general formulation of quantum PCPs, which captures adaptivity and multiple unentangled provers, and give a detailed construction of the quantum reduction to a local Hamiltonian with a constant promise gap. The reduction turns out to be a versatile subroutine to prove properties of quantum PCPs, allowing us to show: (i) Non-adaptive quantum PCPs can simulate adaptive quantum PCPs when the number of proof queries is constant. In fact, this can even be shown to hold when the non-adaptive quantum PCP picks the proof indices simply uniformly at random from a subset of all possible index combinations, answering an open question by Aharonov, Arad, Landau and Vazirani (STOC '09). (ii) If the $q$-local Hamiltonian problem with constant promise gap can be solved in $\\\\mathsf{QCMA}$, then $\\\\mathsf{QPCP}[q] \\\\subseteq \\\\mathsf{QCMA}$ for any $q \\\\in O(1)$. (iii) If $\\\\mathsf{QMA}(k)$ has a quantum PCP for any $k \\\\leq \\\\text{poly}(n)$, then $\\\\mathsf{QMA}(2) = \\\\mathsf{QMA}$, connecting two of the longest-standing open problems in quantum complexity theory. Moreover, we also show that there exist (quantum) oracles relative to which certain quantum PCP statements are false. Hence, any attempt to prove the quantum PCP conjecture requires, just as was the case for the classical PCP theorem, (quantumly) non-relativizing techniques.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-07-11-1791\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-07-11-1791","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们定义了量子pcp的一般公式,它捕获了自适应和多个无纠缠证明,并给出了量子约简到具有恒定承诺差的局部哈密顿量的详细构造。该约简是证明量子pcp性质的通用子程序,允许我们证明:(i)当证明查询数量恒定时,非自适应量子pcp可以模拟自适应量子pcp。事实上,当非自适应量子PCP从所有可能的指标组合的子集中简单均匀随机地选择证明指标时,甚至可以证明这一点,回答了Aharonov, Arad, Landau和Vazirani (STOC '09)提出的一个开放问题。(ii)如果恒定承诺差的$q$ -局部哈密顿问题在$\mathsf{QCMA}$上可以解出,则对于任意$q \in O(1)$都可以解出$\mathsf{QPCP}[q] \subseteq \mathsf{QCMA}$。(iii)如果$\mathsf{QMA}(k)$对任何$k \leq \text{poly}(n)$都有量子PCP,那么$\mathsf{QMA}(2) = \mathsf{QMA}$,连接量子复杂性理论中两个最长期存在的开放问题。此外,我们还证明存在(量子)预言,相对于这些预言,某些量子PCP陈述是假的。因此,任何证明量子PCP猜想的尝试,就像经典PCP定理的情况一样,需要(量子)非相对论化技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum PCPs: on Adaptivity, Multiple Provers and Reductions to Local Hamiltonians
We define a general formulation of quantum PCPs, which captures adaptivity and multiple unentangled provers, and give a detailed construction of the quantum reduction to a local Hamiltonian with a constant promise gap. The reduction turns out to be a versatile subroutine to prove properties of quantum PCPs, allowing us to show: (i) Non-adaptive quantum PCPs can simulate adaptive quantum PCPs when the number of proof queries is constant. In fact, this can even be shown to hold when the non-adaptive quantum PCP picks the proof indices simply uniformly at random from a subset of all possible index combinations, answering an open question by Aharonov, Arad, Landau and Vazirani (STOC '09). (ii) If the $q$-local Hamiltonian problem with constant promise gap can be solved in $\mathsf{QCMA}$, then $\mathsf{QPCP}[q] \subseteq \mathsf{QCMA}$ for any $q \in O(1)$. (iii) If $\mathsf{QMA}(k)$ has a quantum PCP for any $k \leq \text{poly}(n)$, then $\mathsf{QMA}(2) = \mathsf{QMA}$, connecting two of the longest-standing open problems in quantum complexity theory. Moreover, we also show that there exist (quantum) oracles relative to which certain quantum PCP statements are false. Hence, any attempt to prove the quantum PCP conjecture requires, just as was the case for the classical PCP theorem, (quantumly) non-relativizing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信