基于测量的变分量子态制备的学习反馈机制

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-07-11 DOI:10.22331/q-2025-07-11-1792
Daniel Alcalde Puente, Matteo Rizzi
{"title":"基于测量的变分量子态制备的学习反馈机制","authors":"Daniel Alcalde Puente, Matteo Rizzi","doi":"10.22331/q-2025-07-11-1792","DOIUrl":null,"url":null,"abstract":"This work introduces a self-learning protocol that incorporates measurement and feedback into variational quantum circuits for efficient quantum state preparation. By combining projective measurements with conditional feedback, the protocol learns state preparation strategies that extend beyond unitary-only methods, leveraging measurement-based shortcuts to reduce circuit depth. Using the spin-1 Affleck-Kennedy-Lieb-Tasaki state as a benchmark, the protocol learns high-fidelity state preparation by overcoming a family of measurement induced local minima through adjustments of parameter update frequencies and ancilla regularization. Despite these efforts, optimization remains challenging due to the highly non-convex landscapes inherent to variational circuits. The approach is extended to larger systems using translationally invariant ansätze and recurrent neural networks for feedback, demonstrating scalability. Additionally, the successful preparation of a specific AKLT state with desired edge modes highlights the potential to discover new state preparation protocols where none currently exist. These results indicate that integrating measurement and feedback into variational quantum algorithms provides a promising framework for quantum state preparation.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"37 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Feedback Mechanisms for Measurement-Based Variational Quantum State Preparation\",\"authors\":\"Daniel Alcalde Puente, Matteo Rizzi\",\"doi\":\"10.22331/q-2025-07-11-1792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces a self-learning protocol that incorporates measurement and feedback into variational quantum circuits for efficient quantum state preparation. By combining projective measurements with conditional feedback, the protocol learns state preparation strategies that extend beyond unitary-only methods, leveraging measurement-based shortcuts to reduce circuit depth. Using the spin-1 Affleck-Kennedy-Lieb-Tasaki state as a benchmark, the protocol learns high-fidelity state preparation by overcoming a family of measurement induced local minima through adjustments of parameter update frequencies and ancilla regularization. Despite these efforts, optimization remains challenging due to the highly non-convex landscapes inherent to variational circuits. The approach is extended to larger systems using translationally invariant ansätze and recurrent neural networks for feedback, demonstrating scalability. Additionally, the successful preparation of a specific AKLT state with desired edge modes highlights the potential to discover new state preparation protocols where none currently exist. These results indicate that integrating measurement and feedback into variational quantum algorithms provides a promising framework for quantum state preparation.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-07-11-1792\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-07-11-1792","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作引入了一种自学习协议,该协议将测量和反馈集成到变分量子电路中,以实现高效的量子态制备。通过将投射测量与条件反馈相结合,该协议学习了超越单一方法的状态准备策略,利用基于测量的捷径来减少电路深度。该协议以自旋转为1的Affleck-Kennedy-Lieb-Tasaki状态为基准,通过调整参数更新频率和辅助正则化来克服一系列测量引起的局部最小值,从而学习高保真状态准备。尽管做出了这些努力,但由于变分电路固有的高度非凸景观,优化仍然具有挑战性。该方法扩展到更大的系统,使用平移不变量ans÷tze和递归神经网络进行反馈,证明了可扩展性。此外,具有所需边缘模式的特定AKLT状态的成功制备突出了发现当前不存在的新状态制备协议的潜力。这些结果表明,将测量和反馈集成到变分量子算法中为量子态制备提供了一个有前途的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Feedback Mechanisms for Measurement-Based Variational Quantum State Preparation
This work introduces a self-learning protocol that incorporates measurement and feedback into variational quantum circuits for efficient quantum state preparation. By combining projective measurements with conditional feedback, the protocol learns state preparation strategies that extend beyond unitary-only methods, leveraging measurement-based shortcuts to reduce circuit depth. Using the spin-1 Affleck-Kennedy-Lieb-Tasaki state as a benchmark, the protocol learns high-fidelity state preparation by overcoming a family of measurement induced local minima through adjustments of parameter update frequencies and ancilla regularization. Despite these efforts, optimization remains challenging due to the highly non-convex landscapes inherent to variational circuits. The approach is extended to larger systems using translationally invariant ansätze and recurrent neural networks for feedback, demonstrating scalability. Additionally, the successful preparation of a specific AKLT state with desired edge modes highlights the potential to discover new state preparation protocols where none currently exist. These results indicate that integrating measurement and feedback into variational quantum algorithms provides a promising framework for quantum state preparation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信