{"title":"基于测量的变分量子态制备的学习反馈机制","authors":"Daniel Alcalde Puente, Matteo Rizzi","doi":"10.22331/q-2025-07-11-1792","DOIUrl":null,"url":null,"abstract":"This work introduces a self-learning protocol that incorporates measurement and feedback into variational quantum circuits for efficient quantum state preparation. By combining projective measurements with conditional feedback, the protocol learns state preparation strategies that extend beyond unitary-only methods, leveraging measurement-based shortcuts to reduce circuit depth. Using the spin-1 Affleck-Kennedy-Lieb-Tasaki state as a benchmark, the protocol learns high-fidelity state preparation by overcoming a family of measurement induced local minima through adjustments of parameter update frequencies and ancilla regularization. Despite these efforts, optimization remains challenging due to the highly non-convex landscapes inherent to variational circuits. The approach is extended to larger systems using translationally invariant ansätze and recurrent neural networks for feedback, demonstrating scalability. Additionally, the successful preparation of a specific AKLT state with desired edge modes highlights the potential to discover new state preparation protocols where none currently exist. These results indicate that integrating measurement and feedback into variational quantum algorithms provides a promising framework for quantum state preparation.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"37 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Feedback Mechanisms for Measurement-Based Variational Quantum State Preparation\",\"authors\":\"Daniel Alcalde Puente, Matteo Rizzi\",\"doi\":\"10.22331/q-2025-07-11-1792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces a self-learning protocol that incorporates measurement and feedback into variational quantum circuits for efficient quantum state preparation. By combining projective measurements with conditional feedback, the protocol learns state preparation strategies that extend beyond unitary-only methods, leveraging measurement-based shortcuts to reduce circuit depth. Using the spin-1 Affleck-Kennedy-Lieb-Tasaki state as a benchmark, the protocol learns high-fidelity state preparation by overcoming a family of measurement induced local minima through adjustments of parameter update frequencies and ancilla regularization. Despite these efforts, optimization remains challenging due to the highly non-convex landscapes inherent to variational circuits. The approach is extended to larger systems using translationally invariant ansätze and recurrent neural networks for feedback, demonstrating scalability. Additionally, the successful preparation of a specific AKLT state with desired edge modes highlights the potential to discover new state preparation protocols where none currently exist. These results indicate that integrating measurement and feedback into variational quantum algorithms provides a promising framework for quantum state preparation.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-07-11-1792\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-07-11-1792","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Learning Feedback Mechanisms for Measurement-Based Variational Quantum State Preparation
This work introduces a self-learning protocol that incorporates measurement and feedback into variational quantum circuits for efficient quantum state preparation. By combining projective measurements with conditional feedback, the protocol learns state preparation strategies that extend beyond unitary-only methods, leveraging measurement-based shortcuts to reduce circuit depth. Using the spin-1 Affleck-Kennedy-Lieb-Tasaki state as a benchmark, the protocol learns high-fidelity state preparation by overcoming a family of measurement induced local minima through adjustments of parameter update frequencies and ancilla regularization. Despite these efforts, optimization remains challenging due to the highly non-convex landscapes inherent to variational circuits. The approach is extended to larger systems using translationally invariant ansätze and recurrent neural networks for feedback, demonstrating scalability. Additionally, the successful preparation of a specific AKLT state with desired edge modes highlights the potential to discover new state preparation protocols where none currently exist. These results indicate that integrating measurement and feedback into variational quantum algorithms provides a promising framework for quantum state preparation.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.