{"title":"综合转录组学和代谢组学分析揭示了热糖饥饿对粘红酵母YM25079类胡萝卜素合成的调控机制。","authors":"Xingyu Huang, Caina Guo, Xiaolan Huang, Meixia He, Jingdie Fan, Yuan Chen, Jingwen Qiu, Qi Zhang","doi":"10.1186/s13068-025-02678-7","DOIUrl":null,"url":null,"abstract":"<div><p><i>Rhodotorula glutinis</i> is an important oleaginous yeast that can synthesize various valuable compounds, including carotenoids, lipids, and exopolysaccharides. The effect of combined heat stress and glucose starvation on carotenoid biosynthesis in <i>R. glutinis</i> was investigated in this study. Carotenoid production in <i>R. glutinis</i> was promoted by heat stress, and this effect was further enhanced when glucose starvation was applied to the strain. The results of multiomics analysis revealed that the effects of heat stress and glucose starvation on promoting carotenoid biosynthesis appeared to be additive, with the combined stress leading to a further increase in reactive oxygen species (ROS) levels and a reduction in enzymatic antioxidant capacity, while carotenoid biosynthesis was prioritized simultaneously. The key responses of <i>R. glutinis</i> to combined stress include the regulation of the cell cycle and energy metabolism, maintenance of membrane integrity, an increase in ROS scavenging capacity, and non-enzymatic antioxidant activity. Additionally, several candidate genes and metabolites associated with the combined stress response were identified. To summarize, we provided new insights into optimizing fermentation processes for increased carotenoid production in <i>Rhodotorula glutinis</i> and established a molecular basis for further genetic engineering to increase carotenoid yield.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12243306/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrated transcriptomics and metabolomics analysis reveal the regulatory mechanisms underlying the combined effects of heat and glucose starvation on carotenoid biosynthesis in Rhodotorula glutinis YM25079\",\"authors\":\"Xingyu Huang, Caina Guo, Xiaolan Huang, Meixia He, Jingdie Fan, Yuan Chen, Jingwen Qiu, Qi Zhang\",\"doi\":\"10.1186/s13068-025-02678-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><i>Rhodotorula glutinis</i> is an important oleaginous yeast that can synthesize various valuable compounds, including carotenoids, lipids, and exopolysaccharides. The effect of combined heat stress and glucose starvation on carotenoid biosynthesis in <i>R. glutinis</i> was investigated in this study. Carotenoid production in <i>R. glutinis</i> was promoted by heat stress, and this effect was further enhanced when glucose starvation was applied to the strain. The results of multiomics analysis revealed that the effects of heat stress and glucose starvation on promoting carotenoid biosynthesis appeared to be additive, with the combined stress leading to a further increase in reactive oxygen species (ROS) levels and a reduction in enzymatic antioxidant capacity, while carotenoid biosynthesis was prioritized simultaneously. The key responses of <i>R. glutinis</i> to combined stress include the regulation of the cell cycle and energy metabolism, maintenance of membrane integrity, an increase in ROS scavenging capacity, and non-enzymatic antioxidant activity. Additionally, several candidate genes and metabolites associated with the combined stress response were identified. To summarize, we provided new insights into optimizing fermentation processes for increased carotenoid production in <i>Rhodotorula glutinis</i> and established a molecular basis for further genetic engineering to increase carotenoid yield.</p></div>\",\"PeriodicalId\":494,\"journal\":{\"name\":\"Biotechnology for Biofuels\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12243306/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13068-025-02678-7\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-025-02678-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Integrated transcriptomics and metabolomics analysis reveal the regulatory mechanisms underlying the combined effects of heat and glucose starvation on carotenoid biosynthesis in Rhodotorula glutinis YM25079
Rhodotorula glutinis is an important oleaginous yeast that can synthesize various valuable compounds, including carotenoids, lipids, and exopolysaccharides. The effect of combined heat stress and glucose starvation on carotenoid biosynthesis in R. glutinis was investigated in this study. Carotenoid production in R. glutinis was promoted by heat stress, and this effect was further enhanced when glucose starvation was applied to the strain. The results of multiomics analysis revealed that the effects of heat stress and glucose starvation on promoting carotenoid biosynthesis appeared to be additive, with the combined stress leading to a further increase in reactive oxygen species (ROS) levels and a reduction in enzymatic antioxidant capacity, while carotenoid biosynthesis was prioritized simultaneously. The key responses of R. glutinis to combined stress include the regulation of the cell cycle and energy metabolism, maintenance of membrane integrity, an increase in ROS scavenging capacity, and non-enzymatic antioxidant activity. Additionally, several candidate genes and metabolites associated with the combined stress response were identified. To summarize, we provided new insights into optimizing fermentation processes for increased carotenoid production in Rhodotorula glutinis and established a molecular basis for further genetic engineering to increase carotenoid yield.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis