Han-Ying Wang , Xi Wang , Qian-Qian Zhang , Xing-Zhong Miao , Liang-Juan Chen , Li-Jun Sun , Hong-Bo Shi
{"title":"慢性HIV感染个体外周血单个核细胞的整体转录组特征。","authors":"Han-Ying Wang , Xi Wang , Qian-Qian Zhang , Xing-Zhong Miao , Liang-Juan Chen , Li-Jun Sun , Hong-Bo Shi","doi":"10.1016/j.ygeno.2025.111082","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Acquired Immune Deficiency Syndrome (AIDS), resulting from Human Immunodeficiency Virus (HIV) infection, is one of the most severe infectious diseases worldwide. The current state of prevention and control remains critical. Recent studies have increasingly highlighted the significant role of cellular metabolism in regulating immune responses and managing infections. However, whether distinct immunometabolic profiles exist among different groups infected with HIV remains to be investigated. In this study, we employed RNA-seq technology to explore the differential characterization of immune metabolism across various HIV infections.</div></div><div><h3>Methods</h3><div>To investigate the metabolic differences in peripheral blood mononuclear cells (PBMCs) from HIV-infected populations, we obtained PBMCs from 18 individuals diagnosed with HIV. This cohort included four Immune Responders (IRs), five Immune Non-Responders (INRs), five typical progressors (TPs) who maintained high viral loads, and four Elite Controllers (ECs) who sustained low levels of viral replication without treatment. We conducted single-cell sequencing on the PBMCs derived from these patients and compared the results between IRs and INRs, as well as ECs and TPs.</div></div><div><h3>Results</h3><div>Our findings revealed significant metabolic dysregulation and altered inflammatory states in INRs compared to IRs. These alterations were primarily observed in purine metabolism, oxidative phosphorylation (OXPHOS) and glycolysis pathways, as well as modifications in amino acid and fatty acid metabolism pathways. Furthermore, we identified variations within a subset of CD8<sup>+</sup> T-cell populations characterized by high expression of GNLY, which predominantly exerts cytotoxic effects. Differences in metabolic pathways were also noted between ECs and TPs; however, these changes mainly focused on OXPHOS and pentose phosphate pathways while no significant differences were observed in glycolysis pathway.</div></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"117 5","pages":"Article 111082"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global transcriptome characterization of peripheral blood mononuclear cells in individuals with chronic HIV infection\",\"authors\":\"Han-Ying Wang , Xi Wang , Qian-Qian Zhang , Xing-Zhong Miao , Liang-Juan Chen , Li-Jun Sun , Hong-Bo Shi\",\"doi\":\"10.1016/j.ygeno.2025.111082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Acquired Immune Deficiency Syndrome (AIDS), resulting from Human Immunodeficiency Virus (HIV) infection, is one of the most severe infectious diseases worldwide. The current state of prevention and control remains critical. Recent studies have increasingly highlighted the significant role of cellular metabolism in regulating immune responses and managing infections. However, whether distinct immunometabolic profiles exist among different groups infected with HIV remains to be investigated. In this study, we employed RNA-seq technology to explore the differential characterization of immune metabolism across various HIV infections.</div></div><div><h3>Methods</h3><div>To investigate the metabolic differences in peripheral blood mononuclear cells (PBMCs) from HIV-infected populations, we obtained PBMCs from 18 individuals diagnosed with HIV. This cohort included four Immune Responders (IRs), five Immune Non-Responders (INRs), five typical progressors (TPs) who maintained high viral loads, and four Elite Controllers (ECs) who sustained low levels of viral replication without treatment. We conducted single-cell sequencing on the PBMCs derived from these patients and compared the results between IRs and INRs, as well as ECs and TPs.</div></div><div><h3>Results</h3><div>Our findings revealed significant metabolic dysregulation and altered inflammatory states in INRs compared to IRs. These alterations were primarily observed in purine metabolism, oxidative phosphorylation (OXPHOS) and glycolysis pathways, as well as modifications in amino acid and fatty acid metabolism pathways. Furthermore, we identified variations within a subset of CD8<sup>+</sup> T-cell populations characterized by high expression of GNLY, which predominantly exerts cytotoxic effects. Differences in metabolic pathways were also noted between ECs and TPs; however, these changes mainly focused on OXPHOS and pentose phosphate pathways while no significant differences were observed in glycolysis pathway.</div></div>\",\"PeriodicalId\":12521,\"journal\":{\"name\":\"Genomics\",\"volume\":\"117 5\",\"pages\":\"Article 111082\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888754325000989\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888754325000989","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Global transcriptome characterization of peripheral blood mononuclear cells in individuals with chronic HIV infection
Background
Acquired Immune Deficiency Syndrome (AIDS), resulting from Human Immunodeficiency Virus (HIV) infection, is one of the most severe infectious diseases worldwide. The current state of prevention and control remains critical. Recent studies have increasingly highlighted the significant role of cellular metabolism in regulating immune responses and managing infections. However, whether distinct immunometabolic profiles exist among different groups infected with HIV remains to be investigated. In this study, we employed RNA-seq technology to explore the differential characterization of immune metabolism across various HIV infections.
Methods
To investigate the metabolic differences in peripheral blood mononuclear cells (PBMCs) from HIV-infected populations, we obtained PBMCs from 18 individuals diagnosed with HIV. This cohort included four Immune Responders (IRs), five Immune Non-Responders (INRs), five typical progressors (TPs) who maintained high viral loads, and four Elite Controllers (ECs) who sustained low levels of viral replication without treatment. We conducted single-cell sequencing on the PBMCs derived from these patients and compared the results between IRs and INRs, as well as ECs and TPs.
Results
Our findings revealed significant metabolic dysregulation and altered inflammatory states in INRs compared to IRs. These alterations were primarily observed in purine metabolism, oxidative phosphorylation (OXPHOS) and glycolysis pathways, as well as modifications in amino acid and fatty acid metabolism pathways. Furthermore, we identified variations within a subset of CD8+ T-cell populations characterized by high expression of GNLY, which predominantly exerts cytotoxic effects. Differences in metabolic pathways were also noted between ECs and TPs; however, these changes mainly focused on OXPHOS and pentose phosphate pathways while no significant differences were observed in glycolysis pathway.
期刊介绍:
Genomics is a forum for describing the development of genome-scale technologies and their application to all areas of biological investigation.
As a journal that has evolved with the field that carries its name, Genomics focuses on the development and application of cutting-edge methods, addressing fundamental questions with potential interest to a wide audience. Our aim is to publish the highest quality research and to provide authors with rapid, fair and accurate review and publication of manuscripts falling within our scope.