Maribel Pérez-Ribera, Muhammad Faizan-Khan, Roger Giné, Josep M Badia, Alexandra Junza, Oscar Yanes, Marta Sales-Pardo, Roger Guimerà
{"title":"SingleFrag:用于MS/MS片段和光谱预测以及代谢物注释的深度学习工具。","authors":"Maribel Pérez-Ribera, Muhammad Faizan-Khan, Roger Giné, Josep M Badia, Alexandra Junza, Oscar Yanes, Marta Sales-Pardo, Roger Guimerà","doi":"10.1093/bib/bbaf333","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolite and small molecule identification via tandem mass spectrometry (MS/MS) involves matching experimental spectra with prerecorded spectra of known compounds. This process is hindered by the current lack of comprehensive reference spectral libraries. To address this gap, we need accurate in silico fragmentation tools for predicting MS/MS spectra of compounds for which empirical spectra do not exist. Here, we present SingleFrag, a novel deep learning tool that predicts individual fragments separately, rather than attempting to predict the entire fragmentation spectrum at once. Our results demonstrate that SingleFrag surpasses state-of-the-art in silico fragmentation tools, providing a powerful method for annotating unknown MS/MS spectra of known compounds. As a proof of concept, we successfully annotate three previously unidentified compounds frequently found in human samples.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12245663/pdf/","citationCount":"0","resultStr":"{\"title\":\"SingleFrag: a deep learning tool for MS/MS fragment and spectral prediction and metabolite annotation.\",\"authors\":\"Maribel Pérez-Ribera, Muhammad Faizan-Khan, Roger Giné, Josep M Badia, Alexandra Junza, Oscar Yanes, Marta Sales-Pardo, Roger Guimerà\",\"doi\":\"10.1093/bib/bbaf333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolite and small molecule identification via tandem mass spectrometry (MS/MS) involves matching experimental spectra with prerecorded spectra of known compounds. This process is hindered by the current lack of comprehensive reference spectral libraries. To address this gap, we need accurate in silico fragmentation tools for predicting MS/MS spectra of compounds for which empirical spectra do not exist. Here, we present SingleFrag, a novel deep learning tool that predicts individual fragments separately, rather than attempting to predict the entire fragmentation spectrum at once. Our results demonstrate that SingleFrag surpasses state-of-the-art in silico fragmentation tools, providing a powerful method for annotating unknown MS/MS spectra of known compounds. As a proof of concept, we successfully annotate three previously unidentified compounds frequently found in human samples.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12245663/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf333\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf333","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
SingleFrag: a deep learning tool for MS/MS fragment and spectral prediction and metabolite annotation.
Metabolite and small molecule identification via tandem mass spectrometry (MS/MS) involves matching experimental spectra with prerecorded spectra of known compounds. This process is hindered by the current lack of comprehensive reference spectral libraries. To address this gap, we need accurate in silico fragmentation tools for predicting MS/MS spectra of compounds for which empirical spectra do not exist. Here, we present SingleFrag, a novel deep learning tool that predicts individual fragments separately, rather than attempting to predict the entire fragmentation spectrum at once. Our results demonstrate that SingleFrag surpasses state-of-the-art in silico fragmentation tools, providing a powerful method for annotating unknown MS/MS spectra of known compounds. As a proof of concept, we successfully annotate three previously unidentified compounds frequently found in human samples.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.