单序列双视图集成学习预测突变后蛋白质稳定性变化。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Zhiwei Nie, Yiming Ma, Yutian Liu, Xiansong Huang, Zhihong Liu, Peng Yang, Fan Xu, Feng Yin, Zigang Li, Jie Fu, Zhixiang Ren, Wen-Bin Zhang, Jie Chen
{"title":"单序列双视图集成学习预测突变后蛋白质稳定性变化。","authors":"Zhiwei Nie, Yiming Ma, Yutian Liu, Xiansong Huang, Zhihong Liu, Peng Yang, Fan Xu, Feng Yin, Zigang Li, Jie Fu, Zhixiang Ren, Wen-Bin Zhang, Jie Chen","doi":"10.1093/bib/bbaf319","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting the protein stability changes upon mutations is one of the effective ways to improve the efficiency of protein engineering. Here, we propose a dual-view ensemble learning-based framework, DVE-stability, for mutation-induced protein stability change prediction from single sequence. DVE-stability integrates the global and local dependencies of mutations to capture the intramolecular interactions from two views through ensemble learning, in which a structural microenvironment simulation module is designed to indirectly introduce the information of structural microenvironment at the sequence level. DVE-stability achieved state-of-the-art prediction performance on seven single-point mutation benchmark datasets, and comprehensively surpassed other methods on five of them. Furthermore, DVE-stability outperformed other methods comprehensively through zero-shot inference on multiple-point mutation prediction task, demonstrating superior model generalizability to capture the epistasis of multiple-point mutations. More importantly, DVE-stability exhibited superior generalization performance in predicting rare beneficial mutations that are crucial for practical protein directed evolution scenarios. In addition, DVE-stability identified important intramolecular interactions via attention scores, demonstrating interpretable. Overall, DVE-stability provides a flexible and efficient tool for mutation-induced protein stability change prediction in an interpretable ensemble learning manner.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12245664/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting protein stability changes upon mutations with dual-view ensemble learning from single sequence.\",\"authors\":\"Zhiwei Nie, Yiming Ma, Yutian Liu, Xiansong Huang, Zhihong Liu, Peng Yang, Fan Xu, Feng Yin, Zigang Li, Jie Fu, Zhixiang Ren, Wen-Bin Zhang, Jie Chen\",\"doi\":\"10.1093/bib/bbaf319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predicting the protein stability changes upon mutations is one of the effective ways to improve the efficiency of protein engineering. Here, we propose a dual-view ensemble learning-based framework, DVE-stability, for mutation-induced protein stability change prediction from single sequence. DVE-stability integrates the global and local dependencies of mutations to capture the intramolecular interactions from two views through ensemble learning, in which a structural microenvironment simulation module is designed to indirectly introduce the information of structural microenvironment at the sequence level. DVE-stability achieved state-of-the-art prediction performance on seven single-point mutation benchmark datasets, and comprehensively surpassed other methods on five of them. Furthermore, DVE-stability outperformed other methods comprehensively through zero-shot inference on multiple-point mutation prediction task, demonstrating superior model generalizability to capture the epistasis of multiple-point mutations. More importantly, DVE-stability exhibited superior generalization performance in predicting rare beneficial mutations that are crucial for practical protein directed evolution scenarios. In addition, DVE-stability identified important intramolecular interactions via attention scores, demonstrating interpretable. Overall, DVE-stability provides a flexible and efficient tool for mutation-induced protein stability change prediction in an interpretable ensemble learning manner.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12245664/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf319\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf319","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

预测突变后蛋白质的稳定性变化是提高蛋白质工程效率的有效途径之一。在这里,我们提出了一个基于双视图集成学习的框架,即DVE-stability,用于从单个序列预测突变诱导的蛋白质稳定性变化。DVE-stability集成突变的全局依赖和局部依赖,通过集成学习从两个角度捕捉分子内相互作用,其中设计了结构微环境模拟模块,在序列水平上间接引入结构微环境信息。DVE-stability在7个单点突变基准数据集上实现了最先进的预测性能,并在5个单点突变基准数据集上全面优于其他方法。此外,通过对多点突变预测任务的零概率推理,dve -稳定性综合优于其他方法,显示了在捕捉多点突变上位性方面优越的模型泛化性。更重要的是,dve稳定性在预测罕见的有益突变方面表现出优越的泛化性能,这对实际的蛋白质定向进化场景至关重要。此外,dve稳定性通过注意力得分确定了重要的分子内相互作用,证明了其可解释性。综上所述,DVE-stability以一种可解释的集成学习方式为突变诱导的蛋白质稳定性变化预测提供了一种灵活有效的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting protein stability changes upon mutations with dual-view ensemble learning from single sequence.

Predicting the protein stability changes upon mutations is one of the effective ways to improve the efficiency of protein engineering. Here, we propose a dual-view ensemble learning-based framework, DVE-stability, for mutation-induced protein stability change prediction from single sequence. DVE-stability integrates the global and local dependencies of mutations to capture the intramolecular interactions from two views through ensemble learning, in which a structural microenvironment simulation module is designed to indirectly introduce the information of structural microenvironment at the sequence level. DVE-stability achieved state-of-the-art prediction performance on seven single-point mutation benchmark datasets, and comprehensively surpassed other methods on five of them. Furthermore, DVE-stability outperformed other methods comprehensively through zero-shot inference on multiple-point mutation prediction task, demonstrating superior model generalizability to capture the epistasis of multiple-point mutations. More importantly, DVE-stability exhibited superior generalization performance in predicting rare beneficial mutations that are crucial for practical protein directed evolution scenarios. In addition, DVE-stability identified important intramolecular interactions via attention scores, demonstrating interpretable. Overall, DVE-stability provides a flexible and efficient tool for mutation-induced protein stability change prediction in an interpretable ensemble learning manner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信