CAT:使用排列方法对微生物组数据进行条件关联测试。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Yushu Shi, Liangliang Zhang, Kim-Anh Do, Robert R Jenq, Christine B Peterson
{"title":"CAT:使用排列方法对微生物组数据进行条件关联测试。","authors":"Yushu Shi, Liangliang Zhang, Kim-Anh Do, Robert R Jenq, Christine B Peterson","doi":"10.1093/bib/bbaf326","DOIUrl":null,"url":null,"abstract":"<p><p>In microbiome analysis, researchers often seek to identify taxonomic features associated with an outcome of interest. However, microbiome features are intercorrelated and linked by phylogenetic relationships, making it challenging to assess the association between an individual feature and an outcome. This paper proposes a novel conditional association test, CAT, that can account for other features and phylogenetic relatedness when testing the association between a feature and an outcome. CAT adopts a permutation approach, measuring the importance of a feature in predicting the outcome by permuting operational taxonomic unit/amplicon sequence variant counts belonging to that feature from the data and quantifying how much the association with the outcome is weakened through the change in the coefficient of determination $R^{2}$. Compared with marginal association tests, it focuses on the added value of a feature in explaining outcome variation that is not captured by other features. By leveraging global tests including PERMANOVA and MiRKAT-based methods, CAT allows association testing for continuous, binary, categorical, count, survival, and correlated outcomes. We demonstrate through simulation studies that CAT can provide a direct quantification of feature importance that is distinct from that of marginal association tests, and illustrate CAT with applications to two real-world studies on the microbiome in melanoma patients: one examining the role of the microbiome in shaping immunotherapy response, and one investigating the association between the microbiome and survival outcomes. Our results illustrate the potential of CAT to inform the design of microbiome interventions aimed at improving clinical outcomes.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CAT: a conditional association test for microbiome data using a permutation approach.\",\"authors\":\"Yushu Shi, Liangliang Zhang, Kim-Anh Do, Robert R Jenq, Christine B Peterson\",\"doi\":\"10.1093/bib/bbaf326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In microbiome analysis, researchers often seek to identify taxonomic features associated with an outcome of interest. However, microbiome features are intercorrelated and linked by phylogenetic relationships, making it challenging to assess the association between an individual feature and an outcome. This paper proposes a novel conditional association test, CAT, that can account for other features and phylogenetic relatedness when testing the association between a feature and an outcome. CAT adopts a permutation approach, measuring the importance of a feature in predicting the outcome by permuting operational taxonomic unit/amplicon sequence variant counts belonging to that feature from the data and quantifying how much the association with the outcome is weakened through the change in the coefficient of determination $R^{2}$. Compared with marginal association tests, it focuses on the added value of a feature in explaining outcome variation that is not captured by other features. By leveraging global tests including PERMANOVA and MiRKAT-based methods, CAT allows association testing for continuous, binary, categorical, count, survival, and correlated outcomes. We demonstrate through simulation studies that CAT can provide a direct quantification of feature importance that is distinct from that of marginal association tests, and illustrate CAT with applications to two real-world studies on the microbiome in melanoma patients: one examining the role of the microbiome in shaping immunotherapy response, and one investigating the association between the microbiome and survival outcomes. Our results illustrate the potential of CAT to inform the design of microbiome interventions aimed at improving clinical outcomes.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf326\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf326","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在微生物组分析中,研究人员经常寻求识别与感兴趣的结果相关的分类特征。然而,微生物组的特征是相互关联的,并通过系统发育关系联系在一起,这使得评估个体特征与结果之间的关联具有挑战性。本文提出了一种新的条件关联测试,CAT,它可以在测试特征和结果之间的关联时考虑其他特征和系统发育相关性。CAT采用排列方法,通过对数据中属于该特征的操作分类单元/扩增子序列变异计数进行排列来衡量特征在预测结果中的重要性,并通过决定系数R^{2}$的变化来量化与结果的关联减弱程度。与边际关联测试相比,它侧重于解释未被其他特征捕获的结果变化的特征的附加价值。通过利用包括PERMANOVA和基于mirkat的方法在内的全局测试,CAT允许对连续、二进制、分类、计数、生存和相关结果进行关联测试。我们通过模拟研究证明,CAT可以提供与边际关联测试不同的特征重要性的直接量化,并通过两项关于黑色素瘤患者微生物组的实际研究说明CAT的应用:一项研究微生物组在形成免疫治疗反应中的作用,另一项研究微生物组与生存结果之间的关联。我们的研究结果说明了CAT在设计旨在改善临床结果的微生物组干预措施方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CAT: a conditional association test for microbiome data using a permutation approach.

In microbiome analysis, researchers often seek to identify taxonomic features associated with an outcome of interest. However, microbiome features are intercorrelated and linked by phylogenetic relationships, making it challenging to assess the association between an individual feature and an outcome. This paper proposes a novel conditional association test, CAT, that can account for other features and phylogenetic relatedness when testing the association between a feature and an outcome. CAT adopts a permutation approach, measuring the importance of a feature in predicting the outcome by permuting operational taxonomic unit/amplicon sequence variant counts belonging to that feature from the data and quantifying how much the association with the outcome is weakened through the change in the coefficient of determination $R^{2}$. Compared with marginal association tests, it focuses on the added value of a feature in explaining outcome variation that is not captured by other features. By leveraging global tests including PERMANOVA and MiRKAT-based methods, CAT allows association testing for continuous, binary, categorical, count, survival, and correlated outcomes. We demonstrate through simulation studies that CAT can provide a direct quantification of feature importance that is distinct from that of marginal association tests, and illustrate CAT with applications to two real-world studies on the microbiome in melanoma patients: one examining the role of the microbiome in shaping immunotherapy response, and one investigating the association between the microbiome and survival outcomes. Our results illustrate the potential of CAT to inform the design of microbiome interventions aimed at improving clinical outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信