Yushu Shi, Liangliang Zhang, Kim-Anh Do, Robert R Jenq, Christine B Peterson
{"title":"CAT:使用排列方法对微生物组数据进行条件关联测试。","authors":"Yushu Shi, Liangliang Zhang, Kim-Anh Do, Robert R Jenq, Christine B Peterson","doi":"10.1093/bib/bbaf326","DOIUrl":null,"url":null,"abstract":"<p><p>In microbiome analysis, researchers often seek to identify taxonomic features associated with an outcome of interest. However, microbiome features are intercorrelated and linked by phylogenetic relationships, making it challenging to assess the association between an individual feature and an outcome. This paper proposes a novel conditional association test, CAT, that can account for other features and phylogenetic relatedness when testing the association between a feature and an outcome. CAT adopts a permutation approach, measuring the importance of a feature in predicting the outcome by permuting operational taxonomic unit/amplicon sequence variant counts belonging to that feature from the data and quantifying how much the association with the outcome is weakened through the change in the coefficient of determination $R^{2}$. Compared with marginal association tests, it focuses on the added value of a feature in explaining outcome variation that is not captured by other features. By leveraging global tests including PERMANOVA and MiRKAT-based methods, CAT allows association testing for continuous, binary, categorical, count, survival, and correlated outcomes. We demonstrate through simulation studies that CAT can provide a direct quantification of feature importance that is distinct from that of marginal association tests, and illustrate CAT with applications to two real-world studies on the microbiome in melanoma patients: one examining the role of the microbiome in shaping immunotherapy response, and one investigating the association between the microbiome and survival outcomes. Our results illustrate the potential of CAT to inform the design of microbiome interventions aimed at improving clinical outcomes.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CAT: a conditional association test for microbiome data using a permutation approach.\",\"authors\":\"Yushu Shi, Liangliang Zhang, Kim-Anh Do, Robert R Jenq, Christine B Peterson\",\"doi\":\"10.1093/bib/bbaf326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In microbiome analysis, researchers often seek to identify taxonomic features associated with an outcome of interest. However, microbiome features are intercorrelated and linked by phylogenetic relationships, making it challenging to assess the association between an individual feature and an outcome. This paper proposes a novel conditional association test, CAT, that can account for other features and phylogenetic relatedness when testing the association between a feature and an outcome. CAT adopts a permutation approach, measuring the importance of a feature in predicting the outcome by permuting operational taxonomic unit/amplicon sequence variant counts belonging to that feature from the data and quantifying how much the association with the outcome is weakened through the change in the coefficient of determination $R^{2}$. Compared with marginal association tests, it focuses on the added value of a feature in explaining outcome variation that is not captured by other features. By leveraging global tests including PERMANOVA and MiRKAT-based methods, CAT allows association testing for continuous, binary, categorical, count, survival, and correlated outcomes. We demonstrate through simulation studies that CAT can provide a direct quantification of feature importance that is distinct from that of marginal association tests, and illustrate CAT with applications to two real-world studies on the microbiome in melanoma patients: one examining the role of the microbiome in shaping immunotherapy response, and one investigating the association between the microbiome and survival outcomes. Our results illustrate the potential of CAT to inform the design of microbiome interventions aimed at improving clinical outcomes.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf326\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf326","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
CAT: a conditional association test for microbiome data using a permutation approach.
In microbiome analysis, researchers often seek to identify taxonomic features associated with an outcome of interest. However, microbiome features are intercorrelated and linked by phylogenetic relationships, making it challenging to assess the association between an individual feature and an outcome. This paper proposes a novel conditional association test, CAT, that can account for other features and phylogenetic relatedness when testing the association between a feature and an outcome. CAT adopts a permutation approach, measuring the importance of a feature in predicting the outcome by permuting operational taxonomic unit/amplicon sequence variant counts belonging to that feature from the data and quantifying how much the association with the outcome is weakened through the change in the coefficient of determination $R^{2}$. Compared with marginal association tests, it focuses on the added value of a feature in explaining outcome variation that is not captured by other features. By leveraging global tests including PERMANOVA and MiRKAT-based methods, CAT allows association testing for continuous, binary, categorical, count, survival, and correlated outcomes. We demonstrate through simulation studies that CAT can provide a direct quantification of feature importance that is distinct from that of marginal association tests, and illustrate CAT with applications to two real-world studies on the microbiome in melanoma patients: one examining the role of the microbiome in shaping immunotherapy response, and one investigating the association between the microbiome and survival outcomes. Our results illustrate the potential of CAT to inform the design of microbiome interventions aimed at improving clinical outcomes.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.