旋转行星上Boussinesq流体的对称不稳定性

IF 4 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Yaoxuan Zeng, Malte F. Jansen
{"title":"旋转行星上Boussinesq流体的对称不稳定性","authors":"Yaoxuan Zeng,&nbsp;Malte F. Jansen","doi":"10.1029/2025JE009115","DOIUrl":null,"url":null,"abstract":"<p>Symmetric instability has broad applications in geophysical and planetary fluid dynamics. It plays a crucial role in the formation of mesoscale rainbands at mid-latitudes on Earth, instability in the ocean's mixed layer, and slantwise convection on gas giants and icy moon oceans. Here, we apply linear instability analysis to an arbitrary zonally symmetric Boussinesq flow on a rotating spherical planet, with applicability to icy moon oceans. We divide the instabilities into three types: (a) gravitational instability, occurring when stratification is unstable along angular momentum surfaces, (b) inertial instability, occurring when angular momentum shear is unstable along buoyancy surfaces, and (c) a mixed symmetric instability, occurring when neither of the previous conditions are fulfilled, but the potential vorticity has the opposite sign to planetary rotation. We note that <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msup>\n <mi>N</mi>\n <mn>2</mn>\n </msup>\n <mo>&lt;</mo>\n <mn>0</mn>\n </mrow>\n </mrow>\n <annotation> ${N}^{2}&lt; 0$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>N</mi>\n </mrow>\n </mrow>\n <annotation> $N$</annotation>\n </semantics></math> is the Brunt–Väisälä frequency—a typical criterion used to trigger convective adjustment in global ocean models—is neither necessary nor sufficient for instability. Instead, <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>b</mi>\n <mi>z</mi>\n </msub>\n <mspace></mspace>\n <mi>sin</mi>\n <msub>\n <mi>θ</mi>\n <mn>0</mn>\n </msub>\n <mo>&lt;</mo>\n <mn>0</mn>\n </mrow>\n </mrow>\n <annotation> ${b}_{z}\\,\\sin {\\theta }_{0}&lt; 0$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>b</mi>\n <mi>z</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${b}_{z}$</annotation>\n </semantics></math> is the stratification along the planetary rotation axis and <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>θ</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${\\theta }_{0}$</annotation>\n </semantics></math> is the local latitude, is always sufficient for instability and also necessary in the low Rossby number limit. In this limit, relevant for deep convection in icy moon oceans, the most unstable mode is slantwise convection parallel to the planetary rotation axis. This slantwise convection differs from the parameterized convection in existing general circulation models, whose convection schemes parameterize convection in the direction of gravity. Our results suggest that convection schemes in global ocean models must be revised before being applied to icy moon oceans.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 7","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025JE009115","citationCount":"0","resultStr":"{\"title\":\"Symmetric Instability in a Boussinesq Fluid on a Rotating Planet\",\"authors\":\"Yaoxuan Zeng,&nbsp;Malte F. Jansen\",\"doi\":\"10.1029/2025JE009115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Symmetric instability has broad applications in geophysical and planetary fluid dynamics. It plays a crucial role in the formation of mesoscale rainbands at mid-latitudes on Earth, instability in the ocean's mixed layer, and slantwise convection on gas giants and icy moon oceans. Here, we apply linear instability analysis to an arbitrary zonally symmetric Boussinesq flow on a rotating spherical planet, with applicability to icy moon oceans. We divide the instabilities into three types: (a) gravitational instability, occurring when stratification is unstable along angular momentum surfaces, (b) inertial instability, occurring when angular momentum shear is unstable along buoyancy surfaces, and (c) a mixed symmetric instability, occurring when neither of the previous conditions are fulfilled, but the potential vorticity has the opposite sign to planetary rotation. We note that <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msup>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>&lt;</mo>\\n <mn>0</mn>\\n </mrow>\\n </mrow>\\n <annotation> ${N}^{2}&lt; 0$</annotation>\\n </semantics></math> where <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n </mrow>\\n <annotation> $N$</annotation>\\n </semantics></math> is the Brunt–Väisälä frequency—a typical criterion used to trigger convective adjustment in global ocean models—is neither necessary nor sufficient for instability. Instead, <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>b</mi>\\n <mi>z</mi>\\n </msub>\\n <mspace></mspace>\\n <mi>sin</mi>\\n <msub>\\n <mi>θ</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>&lt;</mo>\\n <mn>0</mn>\\n </mrow>\\n </mrow>\\n <annotation> ${b}_{z}\\\\,\\\\sin {\\\\theta }_{0}&lt; 0$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>b</mi>\\n <mi>z</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> ${b}_{z}$</annotation>\\n </semantics></math> is the stratification along the planetary rotation axis and <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>θ</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\theta }_{0}$</annotation>\\n </semantics></math> is the local latitude, is always sufficient for instability and also necessary in the low Rossby number limit. In this limit, relevant for deep convection in icy moon oceans, the most unstable mode is slantwise convection parallel to the planetary rotation axis. This slantwise convection differs from the parameterized convection in existing general circulation models, whose convection schemes parameterize convection in the direction of gravity. Our results suggest that convection schemes in global ocean models must be revised before being applied to icy moon oceans.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"130 7\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025JE009115\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025JE009115\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JE009115","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

对称不稳定性在地球物理和行星流体动力学中有着广泛的应用。它在地球中纬度地区中尺度雨带的形成、海洋混合层的不稳定以及气态巨行星和冰冷的卫星海洋的倾斜对流中起着至关重要的作用。在这里,我们将线性不稳定性分析应用于旋转球形行星上的任意纬向对称Boussinesq流,并适用于冰冷的月球海洋。我们将不稳定性分为三种类型:(a)引力不稳定性,发生在沿角动量面分层不稳定时;(b)惯性不稳定性,发生在沿浮力面角动量切变不稳定时;(c)混合对称不稳定性,发生在前两种条件都不满足时,但位涡量与行星旋转的符号相反。我们注意到n2 &lt;0 ${N}^{2}< 0$其中N $N$是Brunt-Väisälä频率——在全球海洋模式中用于触发对流调整的典型标准——对于不稳定既不是必要的,也不是充分的。b z sin θ 0 &lt;0 ${b}_{z}\,\sin {\theta }_{0}< 0$,b z ${b}_{z}$是沿行星旋转轴的分层θ 0${\theta }_{0}$是当地纬度,对于不稳定性总是足够的,并且在低罗斯比数限制下也是必要的。在这个极限中,与冰冷的月球海洋中的深层对流有关,最不稳定的模式是平行于行星旋转轴的斜向对流。这种斜向对流不同于现有一般环流模式的参数化对流,后者的对流方案参数化了重力方向的对流。我们的结果表明,在将全球海洋模式中的对流方案应用于冰冷的月球海洋之前,必须对其进行修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Symmetric Instability in a Boussinesq Fluid on a Rotating Planet

Symmetric Instability in a Boussinesq Fluid on a Rotating Planet

Symmetric instability has broad applications in geophysical and planetary fluid dynamics. It plays a crucial role in the formation of mesoscale rainbands at mid-latitudes on Earth, instability in the ocean's mixed layer, and slantwise convection on gas giants and icy moon oceans. Here, we apply linear instability analysis to an arbitrary zonally symmetric Boussinesq flow on a rotating spherical planet, with applicability to icy moon oceans. We divide the instabilities into three types: (a) gravitational instability, occurring when stratification is unstable along angular momentum surfaces, (b) inertial instability, occurring when angular momentum shear is unstable along buoyancy surfaces, and (c) a mixed symmetric instability, occurring when neither of the previous conditions are fulfilled, but the potential vorticity has the opposite sign to planetary rotation. We note that N 2 < 0 ${N}^{2}< 0$ where N $N$ is the Brunt–Väisälä frequency—a typical criterion used to trigger convective adjustment in global ocean models—is neither necessary nor sufficient for instability. Instead, b z sin θ 0 < 0 ${b}_{z}\,\sin {\theta }_{0}< 0$ , where b z ${b}_{z}$ is the stratification along the planetary rotation axis and θ 0 ${\theta }_{0}$ is the local latitude, is always sufficient for instability and also necessary in the low Rossby number limit. In this limit, relevant for deep convection in icy moon oceans, the most unstable mode is slantwise convection parallel to the planetary rotation axis. This slantwise convection differs from the parameterized convection in existing general circulation models, whose convection schemes parameterize convection in the direction of gravity. Our results suggest that convection schemes in global ocean models must be revised before being applied to icy moon oceans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信