{"title":"用可微规划求解连续流和稀薄流","authors":"Tianbai Xiao","doi":"10.1016/j.jcp.2025.114224","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate and efficient prediction of multi-scale flows remains a formidable challenge. Constructing theoretical models and numerical methods often involves the design and optimization of parameters. While gradient descent methods have been mainly manifested to shine in the wave of deep learning, composable automatic differentiation can advance scientific computing where the application of classical adjoint methods alone is infeasible or cumbersome. Differentiable programming provides a novel paradigm that unifies data structures and control flows and facilitates gradient-based optimization of parameters in a computer program. This paper addresses the notion and implementation of the first solution algorithm for multi-scale flow physics across continuum and rarefied regimes based on differentiable programming. The fully differentiable simulator provides a unified framework for the convergence of computational fluid dynamics and machine learning, i.e., scientific machine learning. Specifically, parameterized flow models and numerical methods can be constructed for forward physical processes, while the parameters can be trained on the fly with the help of the gradients that are taken through the backward passes of the whole simulation program, a.k.a., end-to-end optimization. As a result, versatile data-augmented modeling and simulation can be achieved for physics discovery, surrogate modeling, and simulation acceleration. The fundamentals and implementation of the solution algorithm are demonstrated in detail. Numerical experiments, including forward and inverse problems for hydrodynamic and kinetic equations, are presented to demonstrate the performance of the numerical method. The open-source codes to reproduce the numerical results are available under the MIT license.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"539 ","pages":"Article 114224"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving continuum and rarefied flows using differentiable programming\",\"authors\":\"Tianbai Xiao\",\"doi\":\"10.1016/j.jcp.2025.114224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate and efficient prediction of multi-scale flows remains a formidable challenge. Constructing theoretical models and numerical methods often involves the design and optimization of parameters. While gradient descent methods have been mainly manifested to shine in the wave of deep learning, composable automatic differentiation can advance scientific computing where the application of classical adjoint methods alone is infeasible or cumbersome. Differentiable programming provides a novel paradigm that unifies data structures and control flows and facilitates gradient-based optimization of parameters in a computer program. This paper addresses the notion and implementation of the first solution algorithm for multi-scale flow physics across continuum and rarefied regimes based on differentiable programming. The fully differentiable simulator provides a unified framework for the convergence of computational fluid dynamics and machine learning, i.e., scientific machine learning. Specifically, parameterized flow models and numerical methods can be constructed for forward physical processes, while the parameters can be trained on the fly with the help of the gradients that are taken through the backward passes of the whole simulation program, a.k.a., end-to-end optimization. As a result, versatile data-augmented modeling and simulation can be achieved for physics discovery, surrogate modeling, and simulation acceleration. The fundamentals and implementation of the solution algorithm are demonstrated in detail. Numerical experiments, including forward and inverse problems for hydrodynamic and kinetic equations, are presented to demonstrate the performance of the numerical method. The open-source codes to reproduce the numerical results are available under the MIT license.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"539 \",\"pages\":\"Article 114224\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999125005078\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125005078","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Solving continuum and rarefied flows using differentiable programming
Accurate and efficient prediction of multi-scale flows remains a formidable challenge. Constructing theoretical models and numerical methods often involves the design and optimization of parameters. While gradient descent methods have been mainly manifested to shine in the wave of deep learning, composable automatic differentiation can advance scientific computing where the application of classical adjoint methods alone is infeasible or cumbersome. Differentiable programming provides a novel paradigm that unifies data structures and control flows and facilitates gradient-based optimization of parameters in a computer program. This paper addresses the notion and implementation of the first solution algorithm for multi-scale flow physics across continuum and rarefied regimes based on differentiable programming. The fully differentiable simulator provides a unified framework for the convergence of computational fluid dynamics and machine learning, i.e., scientific machine learning. Specifically, parameterized flow models and numerical methods can be constructed for forward physical processes, while the parameters can be trained on the fly with the help of the gradients that are taken through the backward passes of the whole simulation program, a.k.a., end-to-end optimization. As a result, versatile data-augmented modeling and simulation can be achieved for physics discovery, surrogate modeling, and simulation acceleration. The fundamentals and implementation of the solution algorithm are demonstrated in detail. Numerical experiments, including forward and inverse problems for hydrodynamic and kinetic equations, are presented to demonstrate the performance of the numerical method. The open-source codes to reproduce the numerical results are available under the MIT license.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.