基于双矩形嵌套谐振器(DRNR)的柔性锰钴铁氧体材料的开发与分析

IF 6.8 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Md.Golam Rabbani , Mohammad Tariqul Islam , Mohamad A. Alawad , Norbahiah Misran , Yazeed Alkhrijah , Abdulmajeed M. Alenezi
{"title":"基于双矩形嵌套谐振器(DRNR)的柔性锰钴铁氧体材料的开发与分析","authors":"Md.Golam Rabbani ,&nbsp;Mohammad Tariqul Islam ,&nbsp;Mohamad A. Alawad ,&nbsp;Norbahiah Misran ,&nbsp;Yazeed Alkhrijah ,&nbsp;Abdulmajeed M. Alenezi","doi":"10.1016/j.jsamd.2025.100948","DOIUrl":null,"url":null,"abstract":"<div><div>A flexible microwave material incorporating Mn–Co ferrite nanoparticles, synthesized via the sol-gel method, was developed for oil impurity detection within the 2–6 GHz frequency range. Structural analysis using X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) revealed crystallite sizes of 21.67–22.53 nm and lattice constants ranging from 9.6873 to 9.7423 Å, dependent on composition. Vibrating Sample Magnetometer (VSM) analysis revealed that the Mn–Co ferrite nanocomposites exhibit robust ferromagnetic behavior, with saturation magnetization ranging from 58.50 emu/g to 24.51 emu/g as manganese content increases, highlighting the tunability of their magnetic properties. The polyvinyl alcohol (PVA)-based material exhibited a dielectric constant (ε<sub>r</sub>) of 6.63 and an increasing loss tangent (T<sub>δ</sub>) from 0.0224 to 0.3254 with higher Mn content. The Dual-Rectangular Nested Resonator (DRNR) design demonstrated resonance at 3.008 GHz, 3.948 GHz, 4.72 GHz, 5.356 GHz, and 5.604 GHz, with attenuation levels between −46.50 dB and −21.07 dB. The sensor effectively identified oil levels, distinguishing olive oil (ε<sub>r</sub> = 3.03) and palm oil (ε<sub>r</sub> = 3.18), offering a compact, high-sensitivity solution for oil impurity detection and advanced microwave applications.</div></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"10 3","pages":"Article 100948"},"PeriodicalIF":6.8000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and analysis of flexible Mn–Co ferrite material incorporating dual-Rectangular nested resonator (DRNR) for enhanced oil impurity sensing\",\"authors\":\"Md.Golam Rabbani ,&nbsp;Mohammad Tariqul Islam ,&nbsp;Mohamad A. Alawad ,&nbsp;Norbahiah Misran ,&nbsp;Yazeed Alkhrijah ,&nbsp;Abdulmajeed M. Alenezi\",\"doi\":\"10.1016/j.jsamd.2025.100948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A flexible microwave material incorporating Mn–Co ferrite nanoparticles, synthesized via the sol-gel method, was developed for oil impurity detection within the 2–6 GHz frequency range. Structural analysis using X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) revealed crystallite sizes of 21.67–22.53 nm and lattice constants ranging from 9.6873 to 9.7423 Å, dependent on composition. Vibrating Sample Magnetometer (VSM) analysis revealed that the Mn–Co ferrite nanocomposites exhibit robust ferromagnetic behavior, with saturation magnetization ranging from 58.50 emu/g to 24.51 emu/g as manganese content increases, highlighting the tunability of their magnetic properties. The polyvinyl alcohol (PVA)-based material exhibited a dielectric constant (ε<sub>r</sub>) of 6.63 and an increasing loss tangent (T<sub>δ</sub>) from 0.0224 to 0.3254 with higher Mn content. The Dual-Rectangular Nested Resonator (DRNR) design demonstrated resonance at 3.008 GHz, 3.948 GHz, 4.72 GHz, 5.356 GHz, and 5.604 GHz, with attenuation levels between −46.50 dB and −21.07 dB. The sensor effectively identified oil levels, distinguishing olive oil (ε<sub>r</sub> = 3.03) and palm oil (ε<sub>r</sub> = 3.18), offering a compact, high-sensitivity solution for oil impurity detection and advanced microwave applications.</div></div>\",\"PeriodicalId\":17219,\"journal\":{\"name\":\"Journal of Science: Advanced Materials and Devices\",\"volume\":\"10 3\",\"pages\":\"Article 100948\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science: Advanced Materials and Devices\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468217925001017\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217925001017","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用溶胶-凝胶法制备了一种含Mn-Co铁氧体纳米粒子的柔性微波材料,用于2-6 GHz频率范围内的石油杂质检测。利用x射线衍射(XRD)和场发射扫描电镜(FESEM)对晶体进行了结构分析,发现晶体尺寸为21.67 ~ 22.53 nm,晶格常数为9.6873 ~ 9.7423 Å。振动样品磁强计(VSM)分析表明,Mn-Co铁氧体纳米复合材料表现出稳健的铁磁行为,随着锰含量的增加,其饱和磁化强度在58.50 ~ 24.51 emu/g之间,显示出磁性能的可调性。随着Mn含量的增加,聚乙烯醇(PVA)基材料的介电常数(εr)为6.63,损耗正切(Tδ)从0.0224增加到0.3254。双矩形嵌套谐振器(DRNR)的谐振频率分别为3.008 GHz、3.948 GHz、4.72 GHz、5.356 GHz和5.604 GHz,衰减范围为- 46.50 dB和- 21.07 dB。该传感器可有效识别油位,区分橄榄油(εr = 3.03)和棕榈油(εr = 3.18),为油杂质检测和先进的微波应用提供紧凑、高灵敏度的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and analysis of flexible Mn–Co ferrite material incorporating dual-Rectangular nested resonator (DRNR) for enhanced oil impurity sensing
A flexible microwave material incorporating Mn–Co ferrite nanoparticles, synthesized via the sol-gel method, was developed for oil impurity detection within the 2–6 GHz frequency range. Structural analysis using X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) revealed crystallite sizes of 21.67–22.53 nm and lattice constants ranging from 9.6873 to 9.7423 Å, dependent on composition. Vibrating Sample Magnetometer (VSM) analysis revealed that the Mn–Co ferrite nanocomposites exhibit robust ferromagnetic behavior, with saturation magnetization ranging from 58.50 emu/g to 24.51 emu/g as manganese content increases, highlighting the tunability of their magnetic properties. The polyvinyl alcohol (PVA)-based material exhibited a dielectric constant (εr) of 6.63 and an increasing loss tangent (Tδ) from 0.0224 to 0.3254 with higher Mn content. The Dual-Rectangular Nested Resonator (DRNR) design demonstrated resonance at 3.008 GHz, 3.948 GHz, 4.72 GHz, 5.356 GHz, and 5.604 GHz, with attenuation levels between −46.50 dB and −21.07 dB. The sensor effectively identified oil levels, distinguishing olive oil (εr = 3.03) and palm oil (εr = 3.18), offering a compact, high-sensitivity solution for oil impurity detection and advanced microwave applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Science: Advanced Materials and Devices
Journal of Science: Advanced Materials and Devices Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.90
自引率
2.50%
发文量
88
审稿时长
47 days
期刊介绍: In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research. Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science. With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信