{"title":"复杂网络的最低程度分解","authors":"Yong Yu , Ming Jing , Na Zhao , Tao Zhou","doi":"10.1016/j.chaos.2025.116765","DOIUrl":null,"url":null,"abstract":"<div><div>The identification of vital nodes is a fundamental challenge in network science. Motivated by the nested nature of real networks, we propose a decomposition method termed <em>Lowest Degree Decomposition</em> (LDD). This method iteratively prunes the nodes with the lowest degree at each step, revealing a refined structural hierarchy. We rigorously prove that LDD is a subdivision of the famous k-core decomposition. We further propose the so-called LDD+ index that integrates the normalized ranking scores of the target node and its immediate neighbors subject to the LDD index. Extensive numerical experiments on epidemic spreading, synchronization, and nonlinear mutualistic dynamics demonstrate that the LDD+ index can more accurately locate the most influential spreaders, the most efficient controllers, and the most vulnerable species than k-core decomposition and other well established indices. In addition to identifying vital nodes, LDD can also be used as a powerful tool in network visualization and a novel criterion in network modeling.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116765"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lowest degree decomposition of complex networks\",\"authors\":\"Yong Yu , Ming Jing , Na Zhao , Tao Zhou\",\"doi\":\"10.1016/j.chaos.2025.116765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The identification of vital nodes is a fundamental challenge in network science. Motivated by the nested nature of real networks, we propose a decomposition method termed <em>Lowest Degree Decomposition</em> (LDD). This method iteratively prunes the nodes with the lowest degree at each step, revealing a refined structural hierarchy. We rigorously prove that LDD is a subdivision of the famous k-core decomposition. We further propose the so-called LDD+ index that integrates the normalized ranking scores of the target node and its immediate neighbors subject to the LDD index. Extensive numerical experiments on epidemic spreading, synchronization, and nonlinear mutualistic dynamics demonstrate that the LDD+ index can more accurately locate the most influential spreaders, the most efficient controllers, and the most vulnerable species than k-core decomposition and other well established indices. In addition to identifying vital nodes, LDD can also be used as a powerful tool in network visualization and a novel criterion in network modeling.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116765\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925007787\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925007787","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The identification of vital nodes is a fundamental challenge in network science. Motivated by the nested nature of real networks, we propose a decomposition method termed Lowest Degree Decomposition (LDD). This method iteratively prunes the nodes with the lowest degree at each step, revealing a refined structural hierarchy. We rigorously prove that LDD is a subdivision of the famous k-core decomposition. We further propose the so-called LDD+ index that integrates the normalized ranking scores of the target node and its immediate neighbors subject to the LDD index. Extensive numerical experiments on epidemic spreading, synchronization, and nonlinear mutualistic dynamics demonstrate that the LDD+ index can more accurately locate the most influential spreaders, the most efficient controllers, and the most vulnerable species than k-core decomposition and other well established indices. In addition to identifying vital nodes, LDD can also be used as a powerful tool in network visualization and a novel criterion in network modeling.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.