环境吸附中的准一级动力学:为什么有两个不同的方程?

Khim Hoong Chu , Jean-Claude Bollinger , Jakub Kierczak
{"title":"环境吸附中的准一级动力学:为什么有两个不同的方程?","authors":"Khim Hoong Chu ,&nbsp;Jean-Claude Bollinger ,&nbsp;Jakub Kierczak","doi":"10.1016/j.esi.2025.07.001","DOIUrl":null,"url":null,"abstract":"<div><div>The pseudo-first-order (PFO) kinetic model is conventionally written as ln(<em>q</em><sub><em>e</em></sub> − <em>q</em><sub><em>t</em></sub>) = ln(<em>q</em><sub><em>e</em></sub>) – <em>k</em><sub>1</sub>·<em>t</em>. However, a mathematically distinct equation, 1/<em>q</em><sub><em>t</em></sub> = <em>τ/(q</em><sub><em>e</em></sub>·<em>t</em>) + 1/<em>q</em><sub><em>e</em></sub>, has been repeatedly and erroneously labeled as the PFO model in the literature. This study is the first to systematically examine and clarify this pervasive misidentification. We identify two key factors contributing to the confusion: (1) the equation’s initial designation as the “generalized first-order kinetic equation,” which was later conflated with the authentic PFO model due to scholarly oversight, and (2) its superficial resemblance to the PFO expression under specific conditions, leading to the mistaken assumption of full equivalence. We show that this equation, originally introduced in the 1960s, constitutes a separate kinetic model with no mathematical relationship to the PFO model. To maintain methodological rigor and terminological accuracy, we urge the environmental adsorption community to discontinue its mislabeling and to correctly recognize this equation as a distinct kinetic formulation.</div></div>","PeriodicalId":100486,"journal":{"name":"Environmental Surfaces and Interfaces","volume":"3 ","pages":"Pages 191-195"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudo-first-order kinetics in environmental adsorption: Why are there two distinct equations?\",\"authors\":\"Khim Hoong Chu ,&nbsp;Jean-Claude Bollinger ,&nbsp;Jakub Kierczak\",\"doi\":\"10.1016/j.esi.2025.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The pseudo-first-order (PFO) kinetic model is conventionally written as ln(<em>q</em><sub><em>e</em></sub> − <em>q</em><sub><em>t</em></sub>) = ln(<em>q</em><sub><em>e</em></sub>) – <em>k</em><sub>1</sub>·<em>t</em>. However, a mathematically distinct equation, 1/<em>q</em><sub><em>t</em></sub> = <em>τ/(q</em><sub><em>e</em></sub>·<em>t</em>) + 1/<em>q</em><sub><em>e</em></sub>, has been repeatedly and erroneously labeled as the PFO model in the literature. This study is the first to systematically examine and clarify this pervasive misidentification. We identify two key factors contributing to the confusion: (1) the equation’s initial designation as the “generalized first-order kinetic equation,” which was later conflated with the authentic PFO model due to scholarly oversight, and (2) its superficial resemblance to the PFO expression under specific conditions, leading to the mistaken assumption of full equivalence. We show that this equation, originally introduced in the 1960s, constitutes a separate kinetic model with no mathematical relationship to the PFO model. To maintain methodological rigor and terminological accuracy, we urge the environmental adsorption community to discontinue its mislabeling and to correctly recognize this equation as a distinct kinetic formulation.</div></div>\",\"PeriodicalId\":100486,\"journal\":{\"name\":\"Environmental Surfaces and Interfaces\",\"volume\":\"3 \",\"pages\":\"Pages 191-195\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Surfaces and Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949864325000153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Surfaces and Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949864325000153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

伪一阶(PFO)动力学模型通常写成ln(qe−qt) = ln(qe) - k1·t。然而,一个数学上不同的方程,1/qt = τ/(qe·t) + 1/qe,在文献中被反复错误地标记为PFO模型。这项研究是第一个系统地检查和澄清这种普遍存在的错误识别。我们确定了造成混淆的两个关键因素:(1)该方程最初被命名为“广义一阶动力学方程”,后来由于学术疏忽而与真正的PFO模型合并;(2)它在特定条件下与PFO表达的表面相似性,导致错误地假设完全等效。我们表明,这个方程最初是在20世纪60年代引入的,它构成了一个单独的动力学模型,与PFO模型没有数学关系。为了保持方法的严谨性和术语的准确性,我们敦促环境吸附界停止其错误标记,并正确认识到这个方程是一个独特的动力学公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pseudo-first-order kinetics in environmental adsorption: Why are there two distinct equations?
The pseudo-first-order (PFO) kinetic model is conventionally written as ln(qe − qt) = ln(qe) – k1·t. However, a mathematically distinct equation, 1/qt = τ/(qe·t) + 1/qe, has been repeatedly and erroneously labeled as the PFO model in the literature. This study is the first to systematically examine and clarify this pervasive misidentification. We identify two key factors contributing to the confusion: (1) the equation’s initial designation as the “generalized first-order kinetic equation,” which was later conflated with the authentic PFO model due to scholarly oversight, and (2) its superficial resemblance to the PFO expression under specific conditions, leading to the mistaken assumption of full equivalence. We show that this equation, originally introduced in the 1960s, constitutes a separate kinetic model with no mathematical relationship to the PFO model. To maintain methodological rigor and terminological accuracy, we urge the environmental adsorption community to discontinue its mislabeling and to correctly recognize this equation as a distinct kinetic formulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信