Liu Wenxian, Sun Shengjie, Peng Jing, Zou Sini, Cheng Haina, Chen Zhu, Wang Yuguang, Zhou Hongbo
{"title":"调节聚焦糖的运输偏好:通过糖外排转运蛋白A转化为“紧进,紧出”模式揭示运输机制","authors":"Liu Wenxian, Sun Shengjie, Peng Jing, Zou Sini, Cheng Haina, Chen Zhu, Wang Yuguang, Zhou Hongbo","doi":"10.1002/bit.70019","DOIUrl":null,"url":null,"abstract":"Sugar transporters play a crucial role in cellular metabolism across diverse organisms, regulating essential biological processes through efficient substrate transport. Despite extensive research efforts, the structures and mechanisms of transporters responsible for sugars have remained elusive. In this study, we investigated the transport efficiency of the <jats:italic>Escherichia coli</jats:italic> sugar efflux transporter A (SetA) for lactose and fucosylated lactose. By employing site and combinatorial mutations, we obtained a mutant exhibiting approximately sixfold enhanced transporter efficiency for fucosylated lactose while retaining its potency for lactose transport. In this mutant, the fundamental amino acids responsible for recognizing the galactosyl moiety remained unchanged, yet the introduction of two face‐to‐face aromatic ring residues facilitated the enhanced recognition of the fucosyl moiety. This indicated the transformation of SetA from a universal transporter into a specific “tight‐in, tight‐out” transporter. Utilizing SetA‐based structural modeling, we mapped and investigated mutations associated with diseases. The structural and biochemical insights from SET in this study offer a valuable investigating framework for understanding substrate specificity mechanisms of fucosylated sugar transporters and, by extension, other transporters in broader contexts.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"22 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulating Transport Preferences of Fucosylated Sugars: Revealing Transport Mechanisms via Sugar Efflux Transporter A Transformation Into a “Tight‐in, Tight‐out” Mode\",\"authors\":\"Liu Wenxian, Sun Shengjie, Peng Jing, Zou Sini, Cheng Haina, Chen Zhu, Wang Yuguang, Zhou Hongbo\",\"doi\":\"10.1002/bit.70019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sugar transporters play a crucial role in cellular metabolism across diverse organisms, regulating essential biological processes through efficient substrate transport. Despite extensive research efforts, the structures and mechanisms of transporters responsible for sugars have remained elusive. In this study, we investigated the transport efficiency of the <jats:italic>Escherichia coli</jats:italic> sugar efflux transporter A (SetA) for lactose and fucosylated lactose. By employing site and combinatorial mutations, we obtained a mutant exhibiting approximately sixfold enhanced transporter efficiency for fucosylated lactose while retaining its potency for lactose transport. In this mutant, the fundamental amino acids responsible for recognizing the galactosyl moiety remained unchanged, yet the introduction of two face‐to‐face aromatic ring residues facilitated the enhanced recognition of the fucosyl moiety. This indicated the transformation of SetA from a universal transporter into a specific “tight‐in, tight‐out” transporter. Utilizing SetA‐based structural modeling, we mapped and investigated mutations associated with diseases. The structural and biochemical insights from SET in this study offer a valuable investigating framework for understanding substrate specificity mechanisms of fucosylated sugar transporters and, by extension, other transporters in broader contexts.\",\"PeriodicalId\":9168,\"journal\":{\"name\":\"Biotechnology and Bioengineering\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bit.70019\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.70019","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Regulating Transport Preferences of Fucosylated Sugars: Revealing Transport Mechanisms via Sugar Efflux Transporter A Transformation Into a “Tight‐in, Tight‐out” Mode
Sugar transporters play a crucial role in cellular metabolism across diverse organisms, regulating essential biological processes through efficient substrate transport. Despite extensive research efforts, the structures and mechanisms of transporters responsible for sugars have remained elusive. In this study, we investigated the transport efficiency of the Escherichia coli sugar efflux transporter A (SetA) for lactose and fucosylated lactose. By employing site and combinatorial mutations, we obtained a mutant exhibiting approximately sixfold enhanced transporter efficiency for fucosylated lactose while retaining its potency for lactose transport. In this mutant, the fundamental amino acids responsible for recognizing the galactosyl moiety remained unchanged, yet the introduction of two face‐to‐face aromatic ring residues facilitated the enhanced recognition of the fucosyl moiety. This indicated the transformation of SetA from a universal transporter into a specific “tight‐in, tight‐out” transporter. Utilizing SetA‐based structural modeling, we mapped and investigated mutations associated with diseases. The structural and biochemical insights from SET in this study offer a valuable investigating framework for understanding substrate specificity mechanisms of fucosylated sugar transporters and, by extension, other transporters in broader contexts.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.