腺苷琥珀酸介导immg诱导的β细胞增殖和抗凋亡作用

IF 7.5 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Diabetes Pub Date : 2025-07-10 DOI:10.2337/db24-1090
Ryota Inoue, Takahiro Tsuno, Takashi Nishimura, Setsuko Fukushima, Sayaka Hirai, Masayuki Shimoda, Yuto Yoshinari, Chisato Sakai, Tatsuya Kin, Euodia X. I. Hui Lim, Adrian Kee Keong Teo, Shinichi Matsumoto, A. M. James Shapiro, Jun Shirakawa
{"title":"腺苷琥珀酸介导immg诱导的β细胞增殖和抗凋亡作用","authors":"Ryota Inoue, Takahiro Tsuno, Takashi Nishimura, Setsuko Fukushima, Sayaka Hirai, Masayuki Shimoda, Yuto Yoshinari, Chisato Sakai, Tatsuya Kin, Euodia X. I. Hui Lim, Adrian Kee Keong Teo, Shinichi Matsumoto, A. M. James Shapiro, Jun Shirakawa","doi":"10.2337/db24-1090","DOIUrl":null,"url":null,"abstract":"Imeglimin, a drug for type 2 diabetes, reportedly promotes β-cell proliferation and increases β-cell survival; however, the detailed underlying molecular mechanism remains unclear. Here, we investigated metabolites in pancreatic islets after imeglimin treatment via liquid chromatography with tandem mass spectrometry. Treatment with imeglimin for 1 h significantly altered the levels of 17 metabolites at 5.6 mmol/L glucose and 11 metabolites at 11.1 mmol/L glucose. After 24 h of treatment, imeglimin changed the levels of 12 metabolites at 5.6 mmol/L glucose and 28 metabolites at 11.1 mmol/L glucose. The metabolites altered by imeglimin under high-glucose conditions were involved in NAD synthesis, amino acid metabolism, and nucleic acid metabolism. Adenylosuccinate (S-AMP), produced by adenylosuccinate synthase (ADSS) from inosine monophosphate (IMP) and aspartate, increased 2.98-fold after treatment with imeglimin. The levels of IMP and aspartate and both the mRNA and protein levels of ADSS were elevated following imeglimin treatment in islets. Alanosine, an inhibitor of ADSS, suppressed imeglimin-induced β-cell proliferation and survival in mouse islets, human islets, human pluripotent stem cell–derived β-cells, and porcine islets. Taken together, these findings suggest that chronic treatment with imeglimin promotes β-cell proliferation and survival partly through an increase in S-AMP production. Article Highlights Although imeglimin promotes β-cell proliferation and ameliorates β-cell apoptosis, the detailed metabolic changes induced by imeglimin in β-cells are unknown. Imeglimin increases adenylosuccinate (S-AMP), which is produced by adenylosuccinate synthase (ADSS) from inosine monophosphate and aspartate, and imeglimin also increases amino acid content, including aspartate, in mouse islets. Inhibition of S-AMP production by an ADSS inhibitor reduces the ability of imeglimin to increase β-cell proliferation and ameliorate β-cell apoptosis in mouse islets, human islets, porcine islets, and human pluripotent stem cell–derived β-cells. Imeglimin increases S-AMP to promote β-cell proliferation and ameliorate β-cell apoptosis.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":"22 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adenylosuccinate Mediates Imeglimin-Induced Proliferative and Antiapoptotic Effects in β-Cells\",\"authors\":\"Ryota Inoue, Takahiro Tsuno, Takashi Nishimura, Setsuko Fukushima, Sayaka Hirai, Masayuki Shimoda, Yuto Yoshinari, Chisato Sakai, Tatsuya Kin, Euodia X. I. Hui Lim, Adrian Kee Keong Teo, Shinichi Matsumoto, A. M. James Shapiro, Jun Shirakawa\",\"doi\":\"10.2337/db24-1090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Imeglimin, a drug for type 2 diabetes, reportedly promotes β-cell proliferation and increases β-cell survival; however, the detailed underlying molecular mechanism remains unclear. Here, we investigated metabolites in pancreatic islets after imeglimin treatment via liquid chromatography with tandem mass spectrometry. Treatment with imeglimin for 1 h significantly altered the levels of 17 metabolites at 5.6 mmol/L glucose and 11 metabolites at 11.1 mmol/L glucose. After 24 h of treatment, imeglimin changed the levels of 12 metabolites at 5.6 mmol/L glucose and 28 metabolites at 11.1 mmol/L glucose. The metabolites altered by imeglimin under high-glucose conditions were involved in NAD synthesis, amino acid metabolism, and nucleic acid metabolism. Adenylosuccinate (S-AMP), produced by adenylosuccinate synthase (ADSS) from inosine monophosphate (IMP) and aspartate, increased 2.98-fold after treatment with imeglimin. The levels of IMP and aspartate and both the mRNA and protein levels of ADSS were elevated following imeglimin treatment in islets. Alanosine, an inhibitor of ADSS, suppressed imeglimin-induced β-cell proliferation and survival in mouse islets, human islets, human pluripotent stem cell–derived β-cells, and porcine islets. Taken together, these findings suggest that chronic treatment with imeglimin promotes β-cell proliferation and survival partly through an increase in S-AMP production. Article Highlights Although imeglimin promotes β-cell proliferation and ameliorates β-cell apoptosis, the detailed metabolic changes induced by imeglimin in β-cells are unknown. Imeglimin increases adenylosuccinate (S-AMP), which is produced by adenylosuccinate synthase (ADSS) from inosine monophosphate and aspartate, and imeglimin also increases amino acid content, including aspartate, in mouse islets. Inhibition of S-AMP production by an ADSS inhibitor reduces the ability of imeglimin to increase β-cell proliferation and ameliorate β-cell apoptosis in mouse islets, human islets, porcine islets, and human pluripotent stem cell–derived β-cells. Imeglimin increases S-AMP to promote β-cell proliferation and ameliorate β-cell apoptosis.\",\"PeriodicalId\":11376,\"journal\":{\"name\":\"Diabetes\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2337/db24-1090\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db24-1090","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

据报道,一种治疗2型糖尿病的药物依米明能促进β细胞增殖并提高β细胞存活率;然而,详细的潜在分子机制尚不清楚。在这里,我们通过液相色谱-串联质谱法研究了伊美霉素治疗后胰岛的代谢物。在5.6 mmol/L葡萄糖浓度下,伊米霉素处理1小时显著改变了17种代谢物和11.1 mmol/L葡萄糖浓度下11种代谢物的水平。处理24 h后,依米霉素改变了5.6 mmol/L葡萄糖时12种代谢物和11.1 mmol/L葡萄糖时28种代谢物的水平。高糖条件下,依米霉素改变的代谢产物涉及NAD合成、氨基酸代谢和核酸代谢。腺苷琥珀酸合成酶(ADSS)以肌苷单磷酸(IMP)和天冬氨酸为原料合成腺苷琥珀酸腺苷(S-AMP),经伊美霉素处理后,腺苷琥珀酸腺苷(S-AMP)增加了2.98倍。imimimin治疗后,胰岛内IMP和天冬氨酸水平以及ADSS mRNA和蛋白水平均升高。Alanosine是一种ADSS抑制剂,在小鼠胰岛、人胰岛、人多能干细胞衍生的β细胞和猪胰岛中抑制immeglimino诱导的β细胞增殖和存活。综上所述,这些研究结果表明,长期使用伊美美明治疗部分通过增加S-AMP的产生来促进β细胞增殖和存活。虽然伊米霉素促进β细胞增殖和改善β细胞凋亡,但伊米霉素在β细胞中引起的详细代谢变化尚不清楚。依米霉素增加了腺苷琥珀酸酯(S-AMP),腺苷琥珀酸酯合成酶(ADSS)由肌苷单磷酸和天冬氨酸产生,依米霉素还增加了小鼠胰岛中的氨基酸含量,包括天冬氨酸。在小鼠胰岛、人胰岛、猪胰岛和人多能干细胞衍生的β细胞中,ADSS抑制剂抑制S-AMP的产生可降低伊米明增加β细胞增殖和改善β细胞凋亡的能力。依米霉素增加S-AMP,促进β细胞增殖,改善β细胞凋亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adenylosuccinate Mediates Imeglimin-Induced Proliferative and Antiapoptotic Effects in β-Cells
Imeglimin, a drug for type 2 diabetes, reportedly promotes β-cell proliferation and increases β-cell survival; however, the detailed underlying molecular mechanism remains unclear. Here, we investigated metabolites in pancreatic islets after imeglimin treatment via liquid chromatography with tandem mass spectrometry. Treatment with imeglimin for 1 h significantly altered the levels of 17 metabolites at 5.6 mmol/L glucose and 11 metabolites at 11.1 mmol/L glucose. After 24 h of treatment, imeglimin changed the levels of 12 metabolites at 5.6 mmol/L glucose and 28 metabolites at 11.1 mmol/L glucose. The metabolites altered by imeglimin under high-glucose conditions were involved in NAD synthesis, amino acid metabolism, and nucleic acid metabolism. Adenylosuccinate (S-AMP), produced by adenylosuccinate synthase (ADSS) from inosine monophosphate (IMP) and aspartate, increased 2.98-fold after treatment with imeglimin. The levels of IMP and aspartate and both the mRNA and protein levels of ADSS were elevated following imeglimin treatment in islets. Alanosine, an inhibitor of ADSS, suppressed imeglimin-induced β-cell proliferation and survival in mouse islets, human islets, human pluripotent stem cell–derived β-cells, and porcine islets. Taken together, these findings suggest that chronic treatment with imeglimin promotes β-cell proliferation and survival partly through an increase in S-AMP production. Article Highlights Although imeglimin promotes β-cell proliferation and ameliorates β-cell apoptosis, the detailed metabolic changes induced by imeglimin in β-cells are unknown. Imeglimin increases adenylosuccinate (S-AMP), which is produced by adenylosuccinate synthase (ADSS) from inosine monophosphate and aspartate, and imeglimin also increases amino acid content, including aspartate, in mouse islets. Inhibition of S-AMP production by an ADSS inhibitor reduces the ability of imeglimin to increase β-cell proliferation and ameliorate β-cell apoptosis in mouse islets, human islets, porcine islets, and human pluripotent stem cell–derived β-cells. Imeglimin increases S-AMP to promote β-cell proliferation and ameliorate β-cell apoptosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diabetes
Diabetes 医学-内分泌学与代谢
CiteScore
12.50
自引率
2.60%
发文量
1968
审稿时长
1 months
期刊介绍: Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes. However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信