定制的介电-磁平衡通过可编程的弛豫极化与磁耦合协同作用,使多功能复合材料中的宽带微波吸收成为可能

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jiawei Ding, Houjiang Liu, Chuangchuang Gong, Yuanyuan Fu, Jin Cui, Yijing Zhang, Xiang Zhang, Chunsheng Shi, Chunnian He, Naiqin Zhao, Fang He
{"title":"定制的介电-磁平衡通过可编程的弛豫极化与磁耦合协同作用,使多功能复合材料中的宽带微波吸收成为可能","authors":"Jiawei Ding, Houjiang Liu, Chuangchuang Gong, Yuanyuan Fu, Jin Cui, Yijing Zhang, Xiang Zhang, Chunsheng Shi, Chunnian He, Naiqin Zhao, Fang He","doi":"10.1016/j.actamat.2025.121328","DOIUrl":null,"url":null,"abstract":"The traditional semi-empirical modulation strategy for composite absorbers no longer meets the design requirements for high-performance electromagnetic wave (EMW) absorbing materials. Herein, this study innovatively demonstrates the importance of a dielectric-magnetic balance in composite absorbers for broadband EMW absorption, utilizing electromagnetic (EM) calculation to determine the necessary range of EM parameters. The research highlights the dominant influence of interfacial polarization on the frequency dispersion (FD) of the real part of the permittivity. Additionally, it examines the wave-climbing effect of optimized impedance, which is induced by single-crystal porous magnetic materials. Building on these insights, we developed a dielectric-magnetic Schottky heterointerface using single-crystal (SC) porous Co<sub>3</sub>O<sub>4</sub> nanosheets (Co<sub>3</sub>O<sub>4</sub>NSs) modified carbon fibers. Simultaneously, to achieve the matching requirement of dielectric-magnetic balance, a cation-exchange strategy is employed, whereby some Co atoms in Co<sub>3</sub>O<sub>4</sub>NSs are substituted with Ni and Fe atoms. This strategy optimizes both the polarization loss and the magnetic coupling effect, thereby facilitating the dielectric-magnetic synergistic absorption. Notably, the effective absorption bandwidth (EAB) of CC@Co<sub>2.4</sub>Ni<sub>0.3</sub>Fe<sub>0.3</sub>O<sub>4</sub>NSs composite reaches 9.4 GHz with only 10.0 wt% filler, indicating excellent broadband absorption performance. Furthermore, the absorber’s highly efficient multifunctional properties provide a significant advantage for practical applications.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"54 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Customized dielectric-magnetic balance enables broadband microwave absorption in multifunctional composites via programmable relaxation polarization synergized with magnetic coupling\",\"authors\":\"Jiawei Ding, Houjiang Liu, Chuangchuang Gong, Yuanyuan Fu, Jin Cui, Yijing Zhang, Xiang Zhang, Chunsheng Shi, Chunnian He, Naiqin Zhao, Fang He\",\"doi\":\"10.1016/j.actamat.2025.121328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional semi-empirical modulation strategy for composite absorbers no longer meets the design requirements for high-performance electromagnetic wave (EMW) absorbing materials. Herein, this study innovatively demonstrates the importance of a dielectric-magnetic balance in composite absorbers for broadband EMW absorption, utilizing electromagnetic (EM) calculation to determine the necessary range of EM parameters. The research highlights the dominant influence of interfacial polarization on the frequency dispersion (FD) of the real part of the permittivity. Additionally, it examines the wave-climbing effect of optimized impedance, which is induced by single-crystal porous magnetic materials. Building on these insights, we developed a dielectric-magnetic Schottky heterointerface using single-crystal (SC) porous Co<sub>3</sub>O<sub>4</sub> nanosheets (Co<sub>3</sub>O<sub>4</sub>NSs) modified carbon fibers. Simultaneously, to achieve the matching requirement of dielectric-magnetic balance, a cation-exchange strategy is employed, whereby some Co atoms in Co<sub>3</sub>O<sub>4</sub>NSs are substituted with Ni and Fe atoms. This strategy optimizes both the polarization loss and the magnetic coupling effect, thereby facilitating the dielectric-magnetic synergistic absorption. Notably, the effective absorption bandwidth (EAB) of CC@Co<sub>2.4</sub>Ni<sub>0.3</sub>Fe<sub>0.3</sub>O<sub>4</sub>NSs composite reaches 9.4 GHz with only 10.0 wt% filler, indicating excellent broadband absorption performance. Furthermore, the absorber’s highly efficient multifunctional properties provide a significant advantage for practical applications.\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actamat.2025.121328\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2025.121328","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统的半经验调制策略已不能满足高性能电磁波吸波材料的设计要求。在此,本研究创新性地证明了复合吸收材料中介电-磁平衡对宽带EMW吸收的重要性,利用电磁(EM)计算来确定必要的EM参数范围。研究强调了界面极化对介电常数实部频散(FD)的主要影响。此外,还研究了单晶多孔磁性材料对优化阻抗的爬波效应。基于这些见解,我们使用单晶(SC)多孔Co3O4纳米片(Co3O4NSs)改性碳纤维开发了介电-磁肖特基异质界面。同时,为了达到介电-磁平衡的匹配要求,采用阳离子交换策略,将Co3O4NSs中的部分Co原子替换为Ni和Fe原子。该策略优化了极化损耗和磁耦合效应,有利于介质-磁协同吸收。值得注意的是,CC@Co2.4Ni0.3Fe0.3O4NSs复合材料的有效吸收带宽(EAB)达到9.4 GHz,仅添加10.0 wt%的填料,具有良好的宽带吸收性能。此外,该吸收器的高效多功能特性为实际应用提供了显著的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Customized dielectric-magnetic balance enables broadband microwave absorption in multifunctional composites via programmable relaxation polarization synergized with magnetic coupling

Customized dielectric-magnetic balance enables broadband microwave absorption in multifunctional composites via programmable relaxation polarization synergized with magnetic coupling
The traditional semi-empirical modulation strategy for composite absorbers no longer meets the design requirements for high-performance electromagnetic wave (EMW) absorbing materials. Herein, this study innovatively demonstrates the importance of a dielectric-magnetic balance in composite absorbers for broadband EMW absorption, utilizing electromagnetic (EM) calculation to determine the necessary range of EM parameters. The research highlights the dominant influence of interfacial polarization on the frequency dispersion (FD) of the real part of the permittivity. Additionally, it examines the wave-climbing effect of optimized impedance, which is induced by single-crystal porous magnetic materials. Building on these insights, we developed a dielectric-magnetic Schottky heterointerface using single-crystal (SC) porous Co3O4 nanosheets (Co3O4NSs) modified carbon fibers. Simultaneously, to achieve the matching requirement of dielectric-magnetic balance, a cation-exchange strategy is employed, whereby some Co atoms in Co3O4NSs are substituted with Ni and Fe atoms. This strategy optimizes both the polarization loss and the magnetic coupling effect, thereby facilitating the dielectric-magnetic synergistic absorption. Notably, the effective absorption bandwidth (EAB) of CC@Co2.4Ni0.3Fe0.3O4NSs composite reaches 9.4 GHz with only 10.0 wt% filler, indicating excellent broadband absorption performance. Furthermore, the absorber’s highly efficient multifunctional properties provide a significant advantage for practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信