金属电沉积理论与原子模拟的挑战。

ACS electrochemistry Pub Date : 2025-06-13 eCollection Date: 2025-07-03 DOI:10.1021/acselectrochem.4c00102
Shayantan Chaudhuri, Reinhard J Maurer
{"title":"金属电沉积理论与原子模拟的挑战。","authors":"Shayantan Chaudhuri, Reinhard J Maurer","doi":"10.1021/acselectrochem.4c00102","DOIUrl":null,"url":null,"abstract":"<p><p>Electrodeposition is a fundamental process in electrochemistry and has applications in numerous industries, such as corrosion protection, decorative finishing, energy storage, catalysis, and electronics. While there is a long history of electrodeposition use, its application for controlled nanostructure growth is limited. The establishment of an atomic-scale understanding of the electrodeposition process and dynamics is crucial to enable the controlled fabrication of metal nanoparticles and other nanostructures. Significant advancements in molecular simulation capabilities and the electronic structure theory of electrified solid-liquid interfaces bring theory closer to realistic applications, but a gap remains between applications, a theoretical understanding of dynamics, and atomistic simulation. In this Review, we briefly summarize the current state-of-the-art computational techniques available for the simulation of electrodeposition and electrochemical growth on surfaces and identify the remaining open challenges.</p>","PeriodicalId":520400,"journal":{"name":"ACS electrochemistry","volume":"1 7","pages":"1014-1032"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12235630/pdf/","citationCount":"0","resultStr":"{\"title\":\"Challenges in the Theory and Atomistic Simulation of Metal Electrodeposition.\",\"authors\":\"Shayantan Chaudhuri, Reinhard J Maurer\",\"doi\":\"10.1021/acselectrochem.4c00102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrodeposition is a fundamental process in electrochemistry and has applications in numerous industries, such as corrosion protection, decorative finishing, energy storage, catalysis, and electronics. While there is a long history of electrodeposition use, its application for controlled nanostructure growth is limited. The establishment of an atomic-scale understanding of the electrodeposition process and dynamics is crucial to enable the controlled fabrication of metal nanoparticles and other nanostructures. Significant advancements in molecular simulation capabilities and the electronic structure theory of electrified solid-liquid interfaces bring theory closer to realistic applications, but a gap remains between applications, a theoretical understanding of dynamics, and atomistic simulation. In this Review, we briefly summarize the current state-of-the-art computational techniques available for the simulation of electrodeposition and electrochemical growth on surfaces and identify the remaining open challenges.</p>\",\"PeriodicalId\":520400,\"journal\":{\"name\":\"ACS electrochemistry\",\"volume\":\"1 7\",\"pages\":\"1014-1032\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12235630/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acselectrochem.4c00102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/3 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acselectrochem.4c00102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/3 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电沉积是电化学中的一个基本过程,在许多行业中都有应用,如防腐,装饰整理,储能,催化和电子。虽然电沉积的应用历史悠久,但其在受控纳米结构生长方面的应用受到限制。建立对电沉积过程和动力学的原子尺度理解对于控制金属纳米颗粒和其他纳米结构的制造至关重要。分子模拟能力和带电固液界面的电子结构理论的重大进步使理论更接近实际应用,但在应用,动力学的理论理解和原子模拟之间仍然存在差距。在这篇综述中,我们简要地总结了目前最先进的计算技术,可用于模拟表面上的电沉积和电化学生长,并指出了仍然存在的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Challenges in the Theory and Atomistic Simulation of Metal Electrodeposition.

Electrodeposition is a fundamental process in electrochemistry and has applications in numerous industries, such as corrosion protection, decorative finishing, energy storage, catalysis, and electronics. While there is a long history of electrodeposition use, its application for controlled nanostructure growth is limited. The establishment of an atomic-scale understanding of the electrodeposition process and dynamics is crucial to enable the controlled fabrication of metal nanoparticles and other nanostructures. Significant advancements in molecular simulation capabilities and the electronic structure theory of electrified solid-liquid interfaces bring theory closer to realistic applications, but a gap remains between applications, a theoretical understanding of dynamics, and atomistic simulation. In this Review, we briefly summarize the current state-of-the-art computational techniques available for the simulation of electrodeposition and electrochemical growth on surfaces and identify the remaining open challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信