非尿素转运体膜蛋白介导的尿素转运。

Q1 Biochemistry, Genetics and Molecular Biology
Minghui Wang, Weidong Wang, Chunling Li
{"title":"非尿素转运体膜蛋白介导的尿素转运。","authors":"Minghui Wang, Weidong Wang, Chunling Li","doi":"10.1007/978-981-96-6898-4_9","DOIUrl":null,"url":null,"abstract":"<p><p>Urea is generated by the urea cycle enzymes, which are mainly in the liver but are also ubiquitously expressed at low levels in other tissues of mammals. Urea is then eliminated through fluids, especially urine. Urea also serves as a readily available nitrogen source for the growth of many organisms, including plants and bacteria. Urea transporters are recognized as the primary membrane proteins responsible for urea transport in organisms. However, an increasing body of studies has identified additional membrane proteins in animals, plants, and microbes that exhibit urea transport capabilities or potential. The contribution of these membrane proteins to the maintenance of physiological homeostasis and their interactions with urea transporters remains to be fully elucidated. In this chapter, transport, characteristics, regulation, as well as cellular localization of non-urea-transporter membrane proteins facilitating urea transport, are reviewed to highlight their roles in physiology and pathophysiology. Specifically, the mammalian aquaporins AQP3, AQP6, AQP7, AQP8, AQP9, AQP10, and a sodium-glucose transporter (SGLT1) in the kidney are permeable to urea. In plants, tonoplast intrinsic proteins (TIPs), a member of aquaporin family, and the DUR3 orthologue, potentially play roles in low- and high-affinity urea transport, respectively. Two urea transporters pH-independent (Yut) and pH-dependent transporters (ureI) in bacteria are known to play roles in disease conditions.</p>","PeriodicalId":21991,"journal":{"name":"Sub-cellular biochemistry","volume":"118 ","pages":"167-191"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urea Transport Mediated by Membrane Proteins of Non-urea-Transporters.\",\"authors\":\"Minghui Wang, Weidong Wang, Chunling Li\",\"doi\":\"10.1007/978-981-96-6898-4_9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Urea is generated by the urea cycle enzymes, which are mainly in the liver but are also ubiquitously expressed at low levels in other tissues of mammals. Urea is then eliminated through fluids, especially urine. Urea also serves as a readily available nitrogen source for the growth of many organisms, including plants and bacteria. Urea transporters are recognized as the primary membrane proteins responsible for urea transport in organisms. However, an increasing body of studies has identified additional membrane proteins in animals, plants, and microbes that exhibit urea transport capabilities or potential. The contribution of these membrane proteins to the maintenance of physiological homeostasis and their interactions with urea transporters remains to be fully elucidated. In this chapter, transport, characteristics, regulation, as well as cellular localization of non-urea-transporter membrane proteins facilitating urea transport, are reviewed to highlight their roles in physiology and pathophysiology. Specifically, the mammalian aquaporins AQP3, AQP6, AQP7, AQP8, AQP9, AQP10, and a sodium-glucose transporter (SGLT1) in the kidney are permeable to urea. In plants, tonoplast intrinsic proteins (TIPs), a member of aquaporin family, and the DUR3 orthologue, potentially play roles in low- and high-affinity urea transport, respectively. Two urea transporters pH-independent (Yut) and pH-dependent transporters (ureI) in bacteria are known to play roles in disease conditions.</p>\",\"PeriodicalId\":21991,\"journal\":{\"name\":\"Sub-cellular biochemistry\",\"volume\":\"118 \",\"pages\":\"167-191\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sub-cellular biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-981-96-6898-4_9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sub-cellular biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-981-96-6898-4_9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

尿素是由尿素循环酶产生的,主要存在于肝脏中,但在哺乳动物的其他组织中也普遍存在低水平表达。然后尿素通过液体,尤其是尿液排出。尿素也是许多生物(包括植物和细菌)生长的一种现成的氮源。尿素转运蛋白被认为是生物体内负责尿素转运的主要膜蛋白。然而,越来越多的研究已经在动物、植物和微生物中发现了其他具有尿素转运能力或潜力的膜蛋白。这些膜蛋白对维持生理稳态的贡献及其与尿素转运体的相互作用仍有待充分阐明。本章综述了促进尿素转运的非尿素转运膜蛋白的转运、特性、调控以及细胞定位,重点介绍了它们在生理和病理生理中的作用。具体来说,哺乳动物肾中的水通道蛋白AQP3、AQP6、AQP7、AQP8、AQP9、AQP10和钠-葡萄糖转运蛋白(SGLT1)可渗透尿素。在植物中,作为水通道蛋白家族成员的tono质体内在蛋白(TIPs)和DUR3同源蛋白可能分别在低亲和力和高亲和力尿素转运中发挥作用。已知细菌中的两种ph非依赖性尿素转运蛋白(Yut)和ph依赖性转运蛋白(ureI)在疾病条件中发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Urea Transport Mediated by Membrane Proteins of Non-urea-Transporters.

Urea is generated by the urea cycle enzymes, which are mainly in the liver but are also ubiquitously expressed at low levels in other tissues of mammals. Urea is then eliminated through fluids, especially urine. Urea also serves as a readily available nitrogen source for the growth of many organisms, including plants and bacteria. Urea transporters are recognized as the primary membrane proteins responsible for urea transport in organisms. However, an increasing body of studies has identified additional membrane proteins in animals, plants, and microbes that exhibit urea transport capabilities or potential. The contribution of these membrane proteins to the maintenance of physiological homeostasis and their interactions with urea transporters remains to be fully elucidated. In this chapter, transport, characteristics, regulation, as well as cellular localization of non-urea-transporter membrane proteins facilitating urea transport, are reviewed to highlight their roles in physiology and pathophysiology. Specifically, the mammalian aquaporins AQP3, AQP6, AQP7, AQP8, AQP9, AQP10, and a sodium-glucose transporter (SGLT1) in the kidney are permeable to urea. In plants, tonoplast intrinsic proteins (TIPs), a member of aquaporin family, and the DUR3 orthologue, potentially play roles in low- and high-affinity urea transport, respectively. Two urea transporters pH-independent (Yut) and pH-dependent transporters (ureI) in bacteria are known to play roles in disease conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sub-cellular biochemistry
Sub-cellular biochemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.90
自引率
0.00%
发文量
33
期刊介绍: The book series SUBCELLULAR BIOCHEMISTRY is a renowned and well recognized forum for disseminating advances of emerging topics in Cell Biology and related subjects. All volumes are edited by established scientists and the individual chapters are written by experts on the relevant topic. The individual chapters of each volume are fully citable and indexed in Medline/Pubmed to ensure maximum visibility of the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信