Benjamin Rothé, Mateusz Mendel, Simon Fortier, Daniel B Constam
{"title":"M6A甲基化抑制Dand5 3'UTR向左右行列式Bicc1的募集。","authors":"Benjamin Rothé, Mateusz Mendel, Simon Fortier, Daniel B Constam","doi":"10.1261/rna.080526.125","DOIUrl":null,"url":null,"abstract":"<p><p>In vertebrates, left-right (LR) asymmetry is specified by asymmetric decay of Dand5 messenger RNA (mRNA) mediated by the recruitment of the BicC family RNA binding protein 1 (Bicc1). Besides regulating organ laterality, Bicc1 is required to prevent cystic dilations in renal tubules and in pancreatic and bile ducts. However, validated target mRNAs are sparse in number, and how their binding to Bicc1 is regulated remains poorly understood. Bicc1 recruitment to Dand5 transcripts requires a conserved AGACGUGAC motif in the 3'UTR. Here, we report an N6-methyladenosine (m6A) in this sequence that disrupts binding to Bicc1 K homology (KH) domains in vitro, in stark contrast to IGF2BPs and FMR1, where m6A promotes RNA recognition by KH domains. We discuss the possible implications of this finding for LR axis formation and for a related role of Bicc1 in regulating specific target mRNAs in the kidney.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M<sup>6</sup>A methylation inhibits recruitment of the Dand5 3'UTR to the left-right determinant Bicc1.\",\"authors\":\"Benjamin Rothé, Mateusz Mendel, Simon Fortier, Daniel B Constam\",\"doi\":\"10.1261/rna.080526.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In vertebrates, left-right (LR) asymmetry is specified by asymmetric decay of Dand5 messenger RNA (mRNA) mediated by the recruitment of the BicC family RNA binding protein 1 (Bicc1). Besides regulating organ laterality, Bicc1 is required to prevent cystic dilations in renal tubules and in pancreatic and bile ducts. However, validated target mRNAs are sparse in number, and how their binding to Bicc1 is regulated remains poorly understood. Bicc1 recruitment to Dand5 transcripts requires a conserved AGACGUGAC motif in the 3'UTR. Here, we report an N6-methyladenosine (m6A) in this sequence that disrupts binding to Bicc1 K homology (KH) domains in vitro, in stark contrast to IGF2BPs and FMR1, where m6A promotes RNA recognition by KH domains. We discuss the possible implications of this finding for LR axis formation and for a related role of Bicc1 in regulating specific target mRNAs in the kidney.</p>\",\"PeriodicalId\":21401,\"journal\":{\"name\":\"RNA\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1261/rna.080526.125\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080526.125","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
M6A methylation inhibits recruitment of the Dand5 3'UTR to the left-right determinant Bicc1.
In vertebrates, left-right (LR) asymmetry is specified by asymmetric decay of Dand5 messenger RNA (mRNA) mediated by the recruitment of the BicC family RNA binding protein 1 (Bicc1). Besides regulating organ laterality, Bicc1 is required to prevent cystic dilations in renal tubules and in pancreatic and bile ducts. However, validated target mRNAs are sparse in number, and how their binding to Bicc1 is regulated remains poorly understood. Bicc1 recruitment to Dand5 transcripts requires a conserved AGACGUGAC motif in the 3'UTR. Here, we report an N6-methyladenosine (m6A) in this sequence that disrupts binding to Bicc1 K homology (KH) domains in vitro, in stark contrast to IGF2BPs and FMR1, where m6A promotes RNA recognition by KH domains. We discuss the possible implications of this finding for LR axis formation and for a related role of Bicc1 in regulating specific target mRNAs in the kidney.
期刊介绍:
RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.