M6A甲基化抑制Dand5 3'UTR向左右行列式Bicc1的募集。

IF 4.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA Pub Date : 2025-07-09 DOI:10.1261/rna.080526.125
Benjamin Rothé, Mateusz Mendel, Simon Fortier, Daniel B Constam
{"title":"M6A甲基化抑制Dand5 3'UTR向左右行列式Bicc1的募集。","authors":"Benjamin Rothé, Mateusz Mendel, Simon Fortier, Daniel B Constam","doi":"10.1261/rna.080526.125","DOIUrl":null,"url":null,"abstract":"<p><p>In vertebrates, left-right (LR) asymmetry is specified by asymmetric decay of Dand5 messenger RNA (mRNA) mediated by the recruitment of the BicC family RNA binding protein 1 (Bicc1). Besides regulating organ laterality, Bicc1 is required to prevent cystic dilations in renal tubules and in pancreatic and bile ducts. However, validated target mRNAs are sparse in number, and how their binding to Bicc1 is regulated remains poorly understood. Bicc1 recruitment to Dand5 transcripts requires a conserved AGACGUGAC motif in the 3'UTR. Here, we report an N6-methyladenosine (m6A) in this sequence that disrupts binding to Bicc1 K homology (KH) domains in vitro, in stark contrast to IGF2BPs and FMR1, where m6A promotes RNA recognition by KH domains. We discuss the possible implications of this finding for LR axis formation and for a related role of Bicc1 in regulating specific target mRNAs in the kidney.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M<sup>6</sup>A methylation inhibits recruitment of the Dand5 3'UTR to the left-right determinant Bicc1.\",\"authors\":\"Benjamin Rothé, Mateusz Mendel, Simon Fortier, Daniel B Constam\",\"doi\":\"10.1261/rna.080526.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In vertebrates, left-right (LR) asymmetry is specified by asymmetric decay of Dand5 messenger RNA (mRNA) mediated by the recruitment of the BicC family RNA binding protein 1 (Bicc1). Besides regulating organ laterality, Bicc1 is required to prevent cystic dilations in renal tubules and in pancreatic and bile ducts. However, validated target mRNAs are sparse in number, and how their binding to Bicc1 is regulated remains poorly understood. Bicc1 recruitment to Dand5 transcripts requires a conserved AGACGUGAC motif in the 3'UTR. Here, we report an N6-methyladenosine (m6A) in this sequence that disrupts binding to Bicc1 K homology (KH) domains in vitro, in stark contrast to IGF2BPs and FMR1, where m6A promotes RNA recognition by KH domains. We discuss the possible implications of this finding for LR axis formation and for a related role of Bicc1 in regulating specific target mRNAs in the kidney.</p>\",\"PeriodicalId\":21401,\"journal\":{\"name\":\"RNA\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1261/rna.080526.125\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080526.125","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在脊椎动物中,左右(LR)不对称是由BicC家族RNA结合蛋白1 (Bicc1)的募集介导的Dand5信使RNA (mRNA)的不对称衰变所指定的。除了调节器官的侧边,Bicc1还需要防止肾小管、胰腺和胆管的囊性扩张。然而,经过验证的靶mrna数量很少,并且它们与Bicc1的结合是如何被调节的仍然知之甚少。Bicc1招募到Dand5转录本需要在3'UTR中保守的AGACGUGAC基序。在这里,我们报道了该序列中的n6 -甲基腺苷(m6A)在体外破坏与Bicc1 K同源性(KH)结构域的结合,与igf2bp和FMR1形成鲜明对比,其中m6A促进KH结构域的RNA识别。我们讨论了这一发现对LR轴形成的可能影响,以及Bicc1在调节肾脏特定靶mrna中的相关作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
M6A methylation inhibits recruitment of the Dand5 3'UTR to the left-right determinant Bicc1.

In vertebrates, left-right (LR) asymmetry is specified by asymmetric decay of Dand5 messenger RNA (mRNA) mediated by the recruitment of the BicC family RNA binding protein 1 (Bicc1). Besides regulating organ laterality, Bicc1 is required to prevent cystic dilations in renal tubules and in pancreatic and bile ducts. However, validated target mRNAs are sparse in number, and how their binding to Bicc1 is regulated remains poorly understood. Bicc1 recruitment to Dand5 transcripts requires a conserved AGACGUGAC motif in the 3'UTR. Here, we report an N6-methyladenosine (m6A) in this sequence that disrupts binding to Bicc1 K homology (KH) domains in vitro, in stark contrast to IGF2BPs and FMR1, where m6A promotes RNA recognition by KH domains. We discuss the possible implications of this finding for LR axis formation and for a related role of Bicc1 in regulating specific target mRNAs in the kidney.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RNA
RNA 生物-生化与分子生物学
CiteScore
8.30
自引率
2.20%
发文量
101
审稿时长
2.6 months
期刊介绍: RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信